QuantifyingandreducingBiasinMaximumLikelihoodEstimationofStructuredAnomaliesUthsavChitra1KimberlyDing1JasperC.H.Lee2BenjaminJ.Raphael1Abstract1.IntroductionAnomalyestimation,ortheproblemoffindingAn...
ActNN:reducingTrainingMemoryFootprintvia2-BitActivationCompressedTrainingJianfeiChen1LianminZheng1ZheweiYao1DequanWang1IonStoica1MichaelW.Mahoney1JosephE.Gonzalez1AbstractTrainingThroughput60L0L1L3...
reducingSamplingErrorinBatchTemporalDifferenceLearningBrahmaS.Pavse1IshanDurugkar1JosiahP.Hanna23PeterStone14Abstractpolicy(Puterman&Shin,1978;Bertsekas,1987;Konda&Tsitsiklis,2000).Thesealgorithmsr...
DropNet:reducingNeuralNetworkComplexityviaIterativePruningJohnTanChongMin1MehulMotani1Abstractodsofreducingcomplexityincludequantizationto16-bit(Guptaetal.,2015),groupL1orL2regularization(AlemuMode...
TheAdvantagesofMultipleClassesforreducingOverfittingfromTestSetReuseVitalyFeldman12RoyFrostig1MoritzHardt34Abstracttransferrathergracefullytoanewlycollectedtestsetcol-lectedfromthesamesourceaccordi...