WhiteningandSecondOrderOptimizationBothMakeInformationintheDatasetUnusableDuringTraining,andCanReduceorPreventGeneralizationNehaS.Wadia1DanielDuckworth2SamuelS.Schoenholz2EthanDyer2JaschaSohl-Dicks...
ConfidenceScoresMakeInstance-dependentLabel-noiseLearningPossibleAntoninBerthon12BoHan31GangNiu1TongliangLiu4MasashiSugiyama15Abstractorizationeffects(Zhangetal.,2017).Thus,learningwithnoisylabelsh...
SIGUA:ForgettingMayMakeLearningwithNoisyLabelsMoreRobustBoHan12GangNiu2XingruiYu3QuanmingYao4MiaoXu25IvorW.Tsang3MasashiSugiyama26Abstractasweightdecay(Krogh&Hertz,1991)anddropout(Sri-vastavaetal.,...
AttacksWhichDoNotKillTrainingMakeAdversarialLearningStrongerJingfengZhang1†XilieXu2BoHan34GangNiu4LizhenCui5MasashiSugiyama46MohanKankanhalli1Abstractsitatestheneedfordeepneuralnetworks(DNNs)tobea...
MaketheMinorityGreatAgain:First-OrderRegretBoundforContextualBanditsZeyuanAllen-Zhu1Se´bastienBubeck1YuanzhiLi2Abstract•Theadversaryselectsalossfunctiont:[K]→[0,1].Regretboundsinonlinelearningco...