碳减排技术范文
碳减排技术篇1
煤炭是我国经济社会发展的基础能源来源,燃煤发电是煤炭消费的重要来源,也是我国电源结构的主要组成部分。随着气候变化问题愈来愈成为国际关注的焦点,国际社会对我国碳排放问题的压力也逐渐增大,碳减排问题引起了政府和学者的高度关注。那么,我国以煤为基础的能源结构和电力结构如何走向低碳发展?“科技进步和科技创新是减缓温室气体排放,提高气候变化适应能力的有效途径”[1],因此,本文将研究焦点集中于低碳能源技术推广与技术进步,其中风电技术和碳捕集技术是两类发展十分迅速的低碳技术。
我国风电累积装机容量从2000年的34.6万kW迅速增加到2010年的4473.3万kW,如图1所示。虽然目前我国已经是世界上风电装机最大的国家,但风电在我国一次能源结构中的比重仍然很小,2010年风力发电量占我国总发电量的比重仅为1.18%。
数据来源:中国可再生能源学会风能专业委员会(中国风能协会)[18]、中国电力企业联合会[19]。
图1 2000年-2010年我国风电装机容量和风力发电量变化
Fig. 1 Installed capacity and generation of wind power from 2000 to 2010
我国从2006年的《国家中长期科学和技术发展规划纲要》(2006-2020年)中提出“开发高效、清洁和二氧化碳近零排放的化石能源开发利用技术”开始,到2007年6月《中国应对气候变化国家方案》正式将二氧化碳捕集及利用、封存技术作为应对气候变化的一项先进使用技术加大开发和推广力度以来,碳捕集与碳封存技术在我国的研究、开发与示范项目工作取得了重要进步。目前,我国有多个企业集团开展碳捕集和/或碳封存项目,主要项目如表1所示。
从表1中可以看出,我国碳捕集项目甚至刚刚处于起步阶段。风电和碳捕集与碳封存(CCS)两种低碳能源技术的未来发展都面临较大的不确定性,因此研究影响其未来发展的主要因素,如实现市场竞争程度的推广时间、减排潜力和减排成本等问题,就显得尤为重要。本文将通过研究试图回答以下几个问题:这两种能源技术能够在多长时间范围内,以多少代价,减排多少二氧化碳?两种能源技术之间将如何进行选择?
本文将首先构建我国低碳能源技术推广的概念模型,其次由技术学习曲线模型,将风电技术和碳捕集①技术的学习部分进行细化;并由此分析风电技术达到与煤电技术可竞争程度所需要的新增投资、学习投资、推广时间以及二氧化碳减排量,并探讨该技术面临的瓶颈及发展限制。最后,利用新建煤粉电厂碳捕集项目的技术学习曲线,分析达到相同二氧化碳减排量条件下,所需要的相关投资与推广时间。
2 国内外现有研究综述
能源技术的推广满足一定规律,Kramer等[2]认为全球技术推广遵循两个定律(law),定律之一是从一项能源新技术可行(available)(产量达到1000TJ)阶段到该项技术成熟(materiality)(占到能源供应总量的1%)阶段,大约满足年均26%的指数增长,且需要经历30年的时间;定律之二是技术达到成熟之后,便开始以缓慢的线性方式增长。他们同时还指出,在技术达到一定规模之前,往往需要政府通过研究与开发(R&D)以及实施示范项目的方式来加以推动,达到可以推广的规模之后,技术成本将变得更加重要,此时政府应该通过市场机制对该项技术进行支持,直至降低到可以与其他技术进行竞争的程度。但能源技术达到成熟阶段之后面临更为重要的任务是解决基础设施规划与建设以及土地的利用等相关问题。
低碳能源技术进步在技术推广过程中将扮演重要角色,从而对低碳发展路线也将产生重要影响,技术成本降低是技术进步的主要表现。不管是技术推广的示范项目阶段,还是技术成熟阶段,技术成本始终是首要考虑之一,降低技术成本也是各种政策机制的主要目标。一般用技术学习曲线来表示技术成本的规模效应或学习效应,即,随着技术规模的不断扩大,技术成本不断降低的过程。Neij等[3]指出,在风电技术推广和发展过程中具有显著的技术学习效应;Rubin等[4]对应用于煤电的尾气脱硫装置(FGD)和选择性催化还原法(SCR)进行分析,认为二者均具有学习效应,并可作为碳捕集技术学习效应的参考。
技术学习曲线较早地可以追溯到Wright据此提出了干中学模型,构建了技术学习曲线。
技术学习曲线也广泛应用于能源技术领域,早在1995年,Lund[7]就对风电技术学习曲线进行过探讨;Mackay等[8]应用技术学习曲线对太阳能电和风电进行成本分析,并进行二者之间的比较;Neij等[3]通过对丹麦、德国、西班牙和瑞典四国风电制造和风电安装成本的分析,分别得到不同国家、不同制造商的设备生产、设备安装部分的技术进步率;Junginger[9]通过基于全球风电场的相关数据,对全球风电场的技术进步率进行分析。
近年有一些研究也将方向集中于碳捕集技术。Riahi等[10,11]利用尾气脱硫技术的学习过程来模拟碳捕集技术的学习曲线,并将技术学习曲线内生化到综合能源系统模型MESSAGE-MACRO中进行分析,认为技术进步对未来能源系统的特征具有决定性的影响;Rubin等[12]用当前各种现存技术,如尾气脱硫技术、煤粉锅炉等7种技术的学习率,对未来的碳捕集电厂进行成本估计;M. van den Broek等[13]进一步地,专门针对二氧化碳捕集技术的电厂效率、捕集率以及能源(额外)需求量等影响运行成本因素的学习曲线进行研究。
技术学习曲线在我国能源领域的研究目前还相当少,郑照宁等[14,15]分别对我国风电和太阳能电的投资成本、累积装机等情况进行分析;李华林等[16,17]将技术学习曲线内生化到能源系统模型MARKAL中,对我国西部能源系统进行分析。
综合上述研究发现,当前国外相关研究主要集中于能源技术学习曲线自身参数的探讨,技术分类更为详细、技术细节更为具体;而仅有的国内少数研究尚无法解决本文提出的主要问题。本文将主要参考国外相关研究,将风电技术和碳捕集技术的学习部分进行细化,在此基础上,构建技术学习曲线;并由此分析风电技术达到与煤电技术可竞争程度所需要的新增投资、学习投资、推广时间以及二氧化碳减排量,并探讨该技术面临的瓶颈及发展限制。最后,利用新建煤粉电厂碳捕集项目的技术学习曲线,分析达到相同二氧化碳减排量条件下,所需要的相关投资与推广时间。
3 理论研究与模型构建
3.1 我国能源技术推广 的路径
我国能源技术推广也满足一定的规律,在发展初期,一般将以超常规的指数增长方式发展,分别以2000年到2010年我国风电装机容量数据和风力发电量数据为例,如图1所示。得到相应的拟合结果为:
相应的风电装机和发电量年均增长率高达67.4%和57.5%。无论是从发电量,还是从装机容量来看,风电在推广初期,其年均增长速度都大大高于26%[2],这与相关国内外政策支持不无相关,但Kramer等[2]认为的指数增长速度实际上也考虑了政策的支持作用。
可以预见,在达到一定的发展规模之后,风电的发展速度将放缓。2010年,风电生产量仅占一次能源生产总量的0.206%,远低于1%的成熟水平。为了拟合其达到成熟阶段之后的发展速度,我们将以我国水电发展为例,1980年我国水电生产量占一次能源生产量的比例就达到1.2%②,近30年的发展如图2所示,为了反映不同时期的水电增长情况,本文将发展期分为80年代、90年代和2000年以来三个区间,相关的拟合结果如下所示:
上述增长路径也并非如Kramer等[2]认为的呈现缓慢的线性增长,主要原因可能是近30年改革开放以来,我国处于快速的工业化与城市化进程中,由需求侧增长的强劲拉动作用,使供应侧能源技术规模呈现指数增长,特别是近8年来,这一增长趋势更为明显。我国能源技术发展的路径用图3表示。
为了得到我国风电的技术学习参数b和技术学习率LR,我们将对国际先行经验进行分析。Neij等[3]通过对丹麦、德国、西班牙和瑞典四国风电制造和风电安装成本的分析,分别得到不同国家、不同制造商的设备生产、设备安装部分的技术进步率,平均值分别为93%和91%,相应地,风电设备生产、设备安装部分的技术学习率分别为7%和9%。他们还进一步区分了国内学习系统(national learning system)和国际学习系统(international learning systems),认为后者是当国际生产商和工人在国与国之间流动所产生的学习效应。Neij等[3]指出,风机的国际学习系统已经初步形成,国际间技术学习率将进一步趋于一致。我国于2010年取消了“风电设备国产化率要达到70%以上,不满足设备国产化要求的风电场不允许建设”的规定,这意味着我国面对国际风电设备竞争更为开放,也更为激烈,但更重要的一点是,我国风机设备制造和安装的发展进入了国际学习系统中。
综合风电设备生产的技术学习率和设备安装的技术学习率,设定未来我国风电资本部分的综合技术学习率为8%,由此,得到b=0.12。
即,为实现平衡累积装机容量,需要新增资本投资35400亿元。学习投资占新增资本投资额的比重为11.3%。
4.1.3 实现平衡累积装机容量所需时间、风电新增运营投资以及减少的排放量
(1)实现平衡累积装机容量所需时间。若我们以2000年到2010年我国风电装机容量数据为基础,计算未来风电发展路径,即λ=0.515。
那么,由公式(11),将相关结果代入,得:=6.1
即如果按照过去6年的风电发展速度,未来只需要6年左右就可以实现风电成本下降到与煤电成本相同的水平。但也应该看到,我国风电的大规模发展仍然主要依赖进口关键技术,国际范围内的技术学习效应尚未形成;另外,上述拟合结果基于近10年来,我国风电投资受到国内国际政策的鼓励,其发展从长期来看,不可维持。因此,我国风电的发展速度将低于上述拟合结果。
为了得出我国风电未来长期可能的发展路径,本文采用21世纪以来的水电增长路径作为未来风电发展的基本路径,原因主要有:①我国改革开放以后,水电得到了迅速发展,1990年小水电占水电总发电量的12.3%;1994年达到29%;到2003年这一数值达到40%,表明我国水电发展市场逐渐放开,受到市场供需关系影响明显;②进入21世纪,随着我国温室气体排放逐渐成为全球关注的焦点,针对我国碳减排的呼声也渐渐达到高峰,因此,作为可再生能源的一种,这一阶段的水电发展基本可以代表未来各种新能源技术的发展路径;③20世纪90年代,水电发展产生的生态、环境问题,曾在国际③国内产生过重大争论,这也部分影响了水电的发展,参考价值较小。由此得到其发展路径如公式(5)所示。取λ=0.11,即年均增长率达到11.6%,将风电初始累积装机容量和平衡累积装机容量结果代入,得:=28.6
即如果按照年均增长11.6%的速度,未来需要29年才可以实现风电成本下降到与煤电成本相同的水平。
(2)新增风电运营投资计算。风电实现累积平衡装机容量时,所需要新增加的运营投资额为:
由此得到,风电实现平衡累积装机容量的新增总投资额为:35400+1 3846=4 9246亿元,其中,风电新增资本投资占新增总投资的比例为71.9%,新增运营投资占新增总投资的比例为28.1%。
(3)未来二氧化碳的总减排量。未来29年总共减少的二氧化碳排放量如下:
4.1.4 风电相关计算结果的评价 上述计算过程所得到的理论结果在现实中很难实现,主要原因是风电技术自身的特点以及与风电发展相关的基础设施规划与建设问题。由于风力发电受到自然条件的制约,其发展的区位布局显得尤其重要;另外通常晚上风力资源相对白天风力资源丰富,调节电网的用电峰谷差也对风电发展具有决定性的影响。由于风电自身具备的这些特点,其发展通常不能超过一定的水平,否则将可能对电网造成震荡,不利于电力安全。就现有的电网技术而言,风电的容量占整个电网容量或局部电网容量的比例一般应在10%左右,突破这一限值,就可能会对电网产生较大的扰动[23]。
因此,假定到未来某一时点t,风电装机达到电网总装机容量的10%,以人均电力装机1kW的中等发达国家水平计算,风电装机应不超过15000万kW,经计算可得到t=16,即到2025年,在目前的电力技术条件下,风电装机将达到最大值,难以实现更大突破。
因此,在2025年之前,风电发展要更加重视长期整体布局问题和基础设施建设问题,即使如此,能够增加的风电装机容量也非常有限,除非电力储存技术等出现重大突破。另一种发展思路,即充分准备—研究与开发、示范项目建设—其他低碳技术,如碳捕集技术,到2025年实现两种技术的对接。
4.2 碳捕集技术的分析与比较
本节需要解决的问题是:如果发展碳捕集技术,为实现相同的二氧化碳减排量,新增资本投资和运营投资分别为多少?发展时间为多长?
本文以煤粉电厂(PC plant)的二氧化碳捕集为例,仅考虑PC电厂的锅炉 和蒸汽轮机部分(简称PC电厂部分)以及二氧化碳捕集部分的资本投资和运营投资,根据公式(7),得到总成本之和为:
为简单起见,假定二氧化碳捕集系统全部安装于新建PC电厂,且二氧化碳全捕集,即二氧化碳捕集量占电厂二氧化碳排放量的100%。那么:
为使得其结果与风电结果具有可比性,假设在基准年,我国安装碳捕集的煤电装机容量将同样达到2500万kW;碳捕集技术的发展也遵循与风电相同的路径;煤电厂年发电小时数为5000h;燃煤电站的煤耗指标也为340g/kWh;二氧化碳排放系数为2.8。相关假设如下:
即,如果发展碳捕集技术,实现相同的二氧化碳减排量,仅需要22年,累积捕集装机容量将达到2 6610万kW。与风电发展相比,实现相同的二氧化碳减排量所需时间较短,相应的平衡捕集装机容量较低。
由于目前尚没有关于碳捕集相关成本的数据,本文采用Rubin等[12]的研究数据,有,
各个部分新增投资如下:
PC电厂部分新增资本投资:2594.65亿美元
PC电厂部分新增运营投资:427.546亿美元
碳捕集部分新增资本投资:572亿美元
碳捕集部分新增运营投资:479.446亿美元
4.3 结果比较
将风电技术与碳捕集技术各部分投资量以及减排成本列在表2中。从表2中可以看出,风电技术的单位减排成本为613.39元/t,与相关结果[24]比较来看,明显较低,反映了技术学习效应带来的成本下降;碳捕集技术成本相比风电技术略低,但考虑到碳运输和碳封存的成本,碳捕集与碳封存系统的单位减排成本将达到115美元,与风电技术相比较高。
风电技术的新增投资都主要集中在资本部分,占全部新增投资的比重达到71.9%,其中学习投资占8.1%;新建PC电厂碳捕集技术的新增投资主要集中在燃料成本部分和资本部分,分别占全部新增投资的比重为44.3%和43.75%,其中新增资本投资中,学习投资比重相当小,反映其学习效应不明显。将原有资本投资以及新增资本投资分摊到各年份,得到资本成本,相对新增投资更高。
从来看,根据IPCC[25],碳封存能力在很长时间内都不会构成碳捕集与碳封存技术发展的制约。而风电发展因自身特点的影响而受到约束。因此,从长期来看,发展燃煤电站碳捕集与碳封存技术,是实现我国以煤为基础的能源结构下,实现大幅度减排二氧化碳的必然选择。当前我国需要将重点放在基础研究与开发以及发展示范项目上,并通过与国外合作、交流、学习的方式,积累经验,顺利实现到2025年与风电技术对接。
5 结论
本文首先对我国低碳能源技术的推广路径进行研究,在此基础上,通过风电和碳捕集技术的学习曲线,分析未来两种技术的推广时间、相关投资以及相应的二氧化碳减排量和减排成本等问题。
(1)我国低碳能源技术推广路径与国际已有研究揭示的路径不同,前者比后者增长更快,主要是由于我国快速经济增长导致的需求所拉动;
(2)以年均增长率11.6%的指数发展路径来拟合风电和碳捕集技术,理论上,我国风电将在未来29年降低到0.4元/kWh,期间可潜在地减排二氧化碳109.8亿t,单位减排成本为613.39元/t;为实现相同的减排量,新建PC电厂碳捕集技术则需要22年即可实现,单位减排成本为76.88美元/t,略低于风电技术成本,但考虑进碳运输和碳封存成本之后,单位减排成本将达到115美元,将比风电技术更高。
(3)从与其他相关研究结果的比较来看,本文研究得到的风电成本与CCS成本相比都较低,反映了技术学习效应对技术成本下降所带来的影响。
(4)在新增投资中,风电技术的新增投资主要集中在资本部分,占全部新增投资的比重达到71.9%,其中学习投资占8.1%;新建PC电厂碳捕集技术的新增投资主要集中在燃料成本部分和资本部分,分别占全部新增投资的比重为44.3%和43.75%,其中新增资本投资中,学习投资比重相当小,反映其学习效应不明显。
(5)在我国目前条件下,从中短期来看,发展以风电为主的可再生能源,相比碳捕集技术,技术更为成熟;但风电技术的发展仍然面临较为严峻的容量限制,本文分析认为,到2025年风电装机规模将达到峰值,更多地发展风电可能会对电网产生扰动,不利于电网安全。
(6)从长期来看,发展燃煤电站碳捕集与碳封存技术,是实现我国以煤为基础的能源结构下,实现大幅度减排二氧化碳的必然选择。当前我国需要将政策重点放在基础研究与发展示范项目上,并通过与国外合作、交流、学习的方式,积累经验,顺利实现到2025年与风电技术对接。
注释:
①CCS技术的成本主要表现在碳捕集部分,根据IPCC special report on carbon capture and storage,碳捕集部分成本占总成本的比重约为1/3.
②电热当量法计算,如果按发电煤耗法计算,则为3.8%.
③如在1996年世界可持续发展峰会上,曾将大水电排除在可再生能源范围之外。
碳减排技术篇2
碳排放和温室效应导致气候异常变化是一个全球性的公共环境问题,已经引起国际社会广泛关注,联合国和一些国家政府及非政府机构开始组织、协调全球温室气体减排工作,包括成立联合国政府间气候变化专门委员会(IPCC),通过建立国际碳减排合作机制、分配碳排放配额、创设碳排放交易市场等途径,遏制碳排放量过快增长。但由于各国经济发展水平的差异,受气候变化影响程度不同,实施碳减排的经济基础和发展低碳经济的动机也不同,加之完成碳减排目标与国家利益存在各种冲突,都使得国际碳减排合作是一个多方利益博弈的过程。联合国气候大会上,各国针对如何建立国际碳减排机制的激烈争论,表面上是欧美等发达国家与发展中国家对碳减排分配方案的争议,实质上是各国争夺发展权和国际经济新秩序的主导权。各国发展低碳经济过程中,通过低碳技术创新,发展新能源产业,完善低碳经济市场机制,提高碳减排能力,并且尝试在国际贸易中征收碳关税,设置绿色贸易壁垒,希望在国际低碳经济领域掌握主导权,以获取国家最大经济和政治利益。可以说,国际低碳经济竞争已经成为覆盖政策、技术、资本和产业的全方位竞争,并且上升为国家战略利益的竞争,低碳经济竞争已经成为全球化背景下国家竞争的重要内容。
国外很多学者从产业发展的角度,研究了发展低碳经济对国家竞争力的影响,AllenTyrchniewicz研究了控制温室气体排放对加拿大农业国际竞争力的影响。[1]HengChiLee和BruceA.MeCarl研究了控制温室气体排放对美国农业的影响。[2]PongsakK和TetsuoT等人研究了能源价格不确定性条件下,碳税政策的制定及其对产业发展的影响。[3]AnnetteB和IsabelC认为气候变化对经济发展既是挑战,也是机遇,从动态和静态两个角度分析了技术创新对欧盟国家低碳经济竞争力的影响。[4]国内学者也开始从国际竞争的角度研究低碳经济,张中祥认为实施碳税,尽管对某些产业可能在短期内造成严重影响,但对国家竞争力的损失并不明显。[5]陈晓春和陈思果主张大力培育和提升低碳竞争力,能为企业和国家逆势发展提供有效支撑和不竭动力,也是企业与国家规避绿色贸易壁垒的有力武器。[6]周建成把低碳竞争力界定为在节能减排目标的指导下,企业通过采用可持续发展战略、低碳技术和清洁生产方式,率先生产、开发、利用比竞争对手具有更低污染、更低排放、更低能耗的产品与服务,从而持续获得竞争优势的能力。[7]一个国家既有保持经济持续增长的迫切需要,又面临着资源、能源、环境的约束,现在又面临履行碳减排的国际责任和压力。发展低碳经济对产业发展及其国际竞争力有何影响,进而如何影响国家竞争力,本文试图探析它们之间的内在逻辑关系。
二、低碳经济与环境保护
“低碳经济”是一个与气候变化相联系的范畴,最早可追溯到20世纪60年代,直到2003年英国能源白皮书[8]才把低碳经济作为一个正式概念提出来,并迅速在世界广泛传播,但对于低碳经济内涵和定义,到目前还没有统一的意见。有的观点从低碳本意出发,认为低碳经济是相对于高碳经济、相对于传统能源、相对于人为碳排量大,实质是能源效率和能源结构问题,因此,这种观点认为,发展低碳经济主要是节能和改善能源结构,降低能源碳密度。另外一种观点从物质流过程出发,认为低碳经济就是经济生命周期全过程中的碳减排和增加碳汇,在物质流的输入环节、转化环节和末端环节中提高能源生产率、降低二氧化碳排放和增加碳汇,这两种是狭义的低碳经济定义。更多的是从广义角度来定义低碳经济,有的观点认为低碳经济与人类社会发展的阶段有关,是产业结构中服务业的比重超过第二产业、人文发展和碳生产力同时达到一定水平下的发展过程与形态。也有观点把低碳经济看作是低碳发展、低碳产业、低碳技术、低碳生活等经济形态的总称,不仅是一种企业盈利及生存模式,还是一种社会存在和社会制度发展的状态,强调社会管理机制、社会生活方式在低碳经济发展中的作用。得到广泛认同的定义是以能源高效利用和清洁开发为基础,以低能耗、低污染、低排放为基本特征的经济发展模式,其实质是提高能源利用效率和创建清洁能源结构,核心是技术创新、制度创新和发展观的转变。[9]
其实低碳经济是人类对当前经济发展模式的反思,需要改变当前经济发展过度依赖资源能源的消耗,以及由此造成自然环境的破坏性影响,希望在人、社会和环境之间建立一种更为和谐的关系。低碳经济的发展模式就是运用低碳经济理论来指导经济活动,将传统经济改造成低碳型的新经济模式,其内在要求是实现人类社会系统过程的各个单元在低能耗、低排放、低污染的条件下和谐共生,提升能源的高效利用、推行区域的清洁发展、促进产品的低碳开发和维持全球的生态平衡,告别不可持续的高碳经济发展时代,实现一种低能耗、低物耗、低污染、低排放、高效能、高效率、高效益的可持续发展经济。可以说,低碳经济是继人类社会经历过原始文明、农业文明、工业文明之后的生态文明,是人类社会继工业革命、信息革命之后的新能源革命。所以,最理想的低碳经济是一种能够提高气候变化的适应能力,尽可能地减缓气候变化的负面影响,同时又能最大限度发展生产力,提高人类发展水平的经济形态,同时兼顾代际公平和代内公平,实现经济社会的可持续发展。
随着人们对环境和经济关系认识的深入,环境问题与经济发展之间的辩证统一关系越来越清晰,一方面,两者相互制约,经济的发展要受到环境、资源的约束,经济发展方式对环境也有显著的影响;另一方面,两者相互依托,相互促进,如果在经济发展中合理利用自然资源,运用经济成果为环境保护提供技术、物质支持,又可以促进生态平衡。越来越多的国家受到经济全球化影响,环境保护对国内经济的影响必然会反映到国际经贸关系上来。环境保护改变了各国经济发展的条件和国家贸易条件,也影响了各国的生产分工和产业转移,对各国的比较优势和国际竞争力产生不可忽略的影响。对环境保护与国际竞争力的关系,目前有三种比较重要的理论假设。一个是“环境竞次理论”(racetothebottom)[10][11][12],该理论认为不同国家或地区对待环境保护问题上的行为类似于“公地悲剧”的发生过程,如果由于采取严格的环保标准,可能导致产业向环保标准较为宽松的地区转移而产生失业、投资减少和工资降低等问题,每个国家都更愿意采取比其他国家更为宽松的环保政策,以使自己处于有利的国家竞争地位,这样的结果就是每个国家都会采取比没有国际竞争情况下更次的环保标准。第二个是“污染避难所假说”(hypothesisofpollutionhaven)或者“产业区位重置假说”(hypothesisofindustriesrelocation)[13][14]。存在贸易竞争的国家之间环保标准和执行力度不同,特别是发达国家和发展中国家之间环境保护力度有很大差异,很多发达国家的产业由于在本国生产要承受的环境成本比较高,为了追求最大化利润,会转移到发展中国家,以便获得成本优势。这种追求环境成本差异而转移的产业,大多是资源消耗高、污染严重的产业,因此发展中国家也就因此成为了污染者的“乐园”,是世界污染和污染密集产业的“避难所”[15]。第三个是“波特假说”(Porterhypothesis)[16],认为有效的环境政策将刺激企业的技术创新和管理创新,从长期来看,由于环境的压力,企业在加大环境保护投资的同时,也在进行技术创新和管理创新等活动,反而会使企业摆脱资源禀赋的约束,能够创造竞争优势提高企业竞争力。
尽管二氧化碳本身不是污染气体,但以二氧化碳为主的温室气体大量排放会加快气候变化,对环境和经济活动的影响是显而易见的。发展低碳经济形式上是一个关注气候变化环境问题,内容是通过新能源技术和减排技术的创新,提高能源利用效率,有效控制碳排放,减缓气候变暖速度,发展低碳经济也是环境保护的重要内容。发展低碳经济的重要内容是调整传统经济结构,发展新兴工业,实现可持续发展,实施过程是各国争夺碳排放权和国际发展空间,提高国家竞争力。
三、低碳经济与国际竞争力
(一)低碳经济与产业转移
随着能源消耗总量持续快速增长,空气中二氧化碳浓度越来越高,国际碳减排形势变的比以往任何时候都更严峻,不管碳减排任务分配的国际谈判结果如何,各国都会面临越来越大的碳减排压力,必然会采取相应的政策措施,对能耗较高的产业和企业进行能源约束或征收碳排放税。受此影响,相关产业和企业的产出就会下降,生产成本上升,导致利润下降。碳减排压力越大的国家,政策措施越严格,对产业的影响越大,特别是能耗较大的产业,受影响程度更大。由于国际碳减排机制的双轨制和灵活性,各国碳减排政策不协调,政策标准和实施力度有很大差异,对国内产业发展的影响程度不同,就会促进资本跨国流动和产业转移。
为了尽量避免能源约束和碳税带来的不利影响,逐利的资本就会从碳减排压力较大的国家转移到碳减排压力较小的国家,从碳减排政策更严格的国家转移到碳减排政策更宽松的国家。从行业来看,高能耗和高碳排放产业由于受到碳减排政策的影响更大,更容易出现跨国转移。所以,发展低碳经济步调较慢的国家更容易承接到其他国家的产业转移,吸收资本和技术促进本国经济发展,而发展低碳经济步调较快的国家,特别是碳减排压力较大的发达国家,如果实施严格的碳减排政策,国内很多产业就容易转移出去,不但影响经济发展,还会带来工人失业等一系列问题,这也是发达国家要求发展中国家共同承担碳减排任务从而使国际碳减排任务分配发生激烈博弈的主要原因。当然,产业转移除了受到低碳经济政策差异影响以外,还会受到其他条件的制约,首先就是要比较跨国转移前后的利润率,因为转移到宽松政策国家虽然可以降低能源约束和碳税带来的不利影响,但也可能面临丧失市场和技术支持等其他不利条件,只有在两方权衡更有利的情况下,资本才愿意跨国转移。另外一个条件就是产业转移接收国家必须具备一定的资源基础,包括充足的能源供应和其他生产要素的支持。低碳经济发展趋势不可避免,而国际碳减排机制的双轨制或多轨制还会持续存在,由此造成的发达国家向发展中国家转移高耗能产业就会继续进行,规模会越来越大。但是国际碳减排机制中碳排放权交易和清洁发展机制(CDM)会在一定程度上削减这种趋势,因为有硬性碳减排义务的缔约国的企业,可以通过交易市场购买碳排放额度,或者购买没有硬性碳减排义务的非缔约国实施碳减排项目的CERS(经认证的碳减排量),可以算成是自己的碳减排,就可以降低国内能源约束和碳税的影响。如果碳减排额度的购买费用低于碳税带来的成本上升,就没有必要转移了。另外,发达国家如果开始实施碳关税,会增加来自发展中国家产品的障碍,发达国家企业如果想通过产业转移来规避国内碳税的话,则又会面临碳关税的壁垒,为了国内市场的考虑,产业转移的吸引力则大大降低。另外,作为低碳经济重要内容的清洁能源,也可以发挥太阳能、风能、水利、潮汐和生物质等自然资源的禀赋优势,吸引资本和技术投入,发展清洁能源产业,促进经济增长。
(二)低碳经济与技术进步
实现碳减排的主要途径就是节约化石能源消耗、使用清洁能源和提高能源利用效率,对二氧化碳等温室气体进行捕集、存储和利用,这都有赖于技术进步,技术创新在低碳经济中发挥基础性作用。新能源是在新技术基础上开发利用的可再生能源和清洁能源,发展新能源是低碳经济的重要组成部分,也是未来经济社会可持续发展的能源基础。各国为了完成碳减排目标,发展低碳经济,必然会加大对低碳技术的研发投入,推广低碳技术应用。其他领域生产由于受到能源约束,也会通过技术进步弥补影响,提高生产效率,保障其资本收益水平。
低碳经济作为新的经济发展模式,对于促进企业技术创新,可以从外部驱动和内部驱动两个方面来看。从内部驱动来看,企业生产目的就是追求利润最大化,就算是没有低碳经济政策的约束,企业也有通过技术创新来节约能源降低成本的内在动力,只是从成本角度来看,传统化石能源具有成本优势,使得企业不愿意采用更为昂贵的新能源。随着低碳生产和低碳生活模式得到越来越广泛的认可,低碳意识在生产、流通和消费等领域逐步渗透,低碳生产和低碳经营已经成为企业竞争的重要手段之一,很多企业开始把应用低碳技术作为获得公众认可的途径,特别是通过低碳技术创新,企业在融资、政府扶持、获得同行信赖、赢得消费者认同等方面获得优势,在这些因素的作用下,企业更加注重其低碳经营形象,具有低碳技术创新的积极性。发展低碳经济将催生新能源、环保等一系列新的产业,具有开拓性的企业会抓住机遇,开辟新的生产和服务领域,掌握主动权的关键在于自主创新和技术进步,企业为了获得在新领域的竞争力,也会主动进行低碳技术的自主创新,甚至利用技术创新设置行业壁垒,限制其他企业进入,通过阻碍资本流动以获得垄断利润。企业进行低碳技术创新也会面临不少阻力,主要来自技术创新风险,低碳技术研发需要额外投入大量的人力、物力和财力,增加了企业生产成本,作为新的技术创新领域,低碳技术本身还具有高风险性,在技术研发和应用的初期阶段,表现出高成本、低收益的特征,难以与现有比较成熟的生产技术进行竞争,加大了企业低碳技术研发的难度。另外,如果成功的创新技术不能得到有效保护,很容易被别的企业模仿,从而会丧失创新带来的技术优势,打击企业低碳技术研发的积极性。当然,随着低碳技术的日益成熟和广泛应用,这些阻力会逐步变小,发展低碳经济促进企业技术自主创新的作用会越来越明显。
从外部驱动来看,低碳经济政策的实施迫使企业不得不转向技术创新,首先是传统能源约束、能源价格和碳税等政策作用,加大了企业的生产成本,为了追逐利润,企业只能通过技术创新来改进生产工艺,提高生产和管理效率,才能完成节能任务,或者抵消低碳政策带来的成本增加。其次,政府为营造低碳技术创新环境,就会通过财政、金融等手段鼓励企业技术创新,包括直接科研资助、信贷优惠、政府采购和财政补贴等扶持政策,这些政策和措施作为一种外生的驱动力量从不同侧面提高了企业低碳技术创新的积极性。这种刺激效应的大小也是受到多种因素影响,关键在于政府扶持政策的力度大小和持续时间长短,以及给社会带来的预期,如果政策力度太小或者存在不确定性,对企业的刺激作用就不会明显。最后,技术创新已经成为竞争优势的重要来源,低碳技术创新将成为企业在低碳发展模式下竞争的重要手段,企业要在激烈的竞争中立于不败之地,必须加大低碳技术的积累和应用,充分利用新的低碳技术与管理方法,采取积极主动战略去应对新的竞争,才能提高其整体竞争力。
(三)低碳经济与竞争优势
低碳经济首要的就是降低能源消耗,减少温室气体排放,化石能源相关产业的发展必然受到影响,企业由于节能设备或改用其他能源的投入增加了资本沉淀。由于当前技术水平的制约,太阳能、核电和风电等新能源成本较高,大量使用新能源必将增加企业生产成本,特别是高耗能产业的生产成本将大幅度提升。一个国家或地区碳减排任务越大,节能减排的压力越大,企业生产成本提高越明显,产出下降的幅度就会更大。化工、冶金、制造、建材等高耗能行业的产出降低和成本上升,通过原材料的传递效应进而会影响到整个社会的产出水平和物价水平,会对宏观经济产生不利影响。碳税作为一种价格调节手段,会提高能源价格,有利于各行业节约使用能源,但传导作用会影响经济产出,特别是能源消耗大的行业受到影响非常明显。郑玉歆[17]认为如果中国征收碳税,短期内产出下降最大的部门五个部门分别是采煤、天然气、炼焦等能源产业和纺织、服装轻工业,其中采煤部门产出下降幅度达到10.68%,长期产出受到影响最大的部门是采煤、天然气、炼焦、石油加工和金属冶炼行业。魏涛远和格罗姆斯洛德[18]认为中国征收碳税虽然可以使二氧化碳排放量下降,但会使中国经济恶化,经济代价十分高昂。财政部财政科学研究所课题组[19]认为,开征碳税会使GDP下降,使各行业的产出、出口下降,随着时间推移,影响程度越来越大。张明喜[20]则认为碳税可以使我国二氧化碳排放量大幅度下降,虽然对各行业产出有负面影响,对经济影响不大,而且长期影响越来越小。
从国际比较优势来看,发展低碳经济使依赖化石能源出口以及高耗能产业产品出口的国家受到很大影响,控制化石能源使用、使用清洁能源或者征收碳税都会使产品成本上升,降低比较优势,化石能源丰富的国家其资源禀赋优势逐步丧失。实施低碳经济政策可能导致国际贸易中处于不利的地位,正是基于这种考虑,不管是发达国家还是发展中国家都不愿意过多承担碳减排任务,各国甚至竞相放宽碳减排目标,不愿意严格执行低碳经济政策。同时,由于各国处于不同发展阶段,产业结构和技术水平有很大差异,在国际产业分工体系中处于不同地位,产业发展对能源的依赖程度不同,造成各国发展低碳经济的基础条件和动力各不相同,体现在国际贸易中就引发了碳关税等贸易壁垒,由此产生新的贸易保护主义。发达国家基本完成了工业化进程,进入后工业化阶段或者信息化发展阶段,第二产业在经济中的比重较小,生产中的能源需求相对较小,能源消耗强度比较低,而交通等消费性的能源消耗比较大,加上较好的生态环境,具有发展低碳经济的有利条件。在国际贸易中,发达国家一般出口技术密集型产品和服务,能耗低、附加值高,进口的产品多是高能耗、附加值低的劳动密集型产品或资源密集型产品,如果各国都要完成碳减排义务的话,发达国家的产业受碳减排的影响比较小,具有低碳发展模式下的国家竞争优势。而且发达国家还基于气候变化的全球性危机,要求甚至逼迫发展中国家也承担碳减排责任,其手段就是开征碳关税,对进口商品在生产、运输、存储过程中承载的碳排放征收额外关税。因此,发达国家在享受发展中国家丰富的廉价物质产品的同时,却要发展中国家承担因为商品生产而大量消耗能源和排放二氧化碳的责任,并且还可以据此设置贸易壁垒,削弱其他国家的竞争力。
碳减排技术篇3
1.1参考Chai[8]的研究成果,出口贸易引起的碳排放可以用公式表示为。式(2)中带撇的变量表示该变量在研究时序内的变化量,等式左边表示由出口引起的碳排放变化量,右边的第一项表示我国出口贸易的结构效应,即在总出口额和部门碳排放强度不变的情况下,由出口结构变化带来的碳排放量变化;第二项为技术效应,即在出口总额与出口结构不变的情况下,由各部门碳排放强度变化引起的碳排放量变化;第三项表示规模效应,即在出口结构和部门碳排放强度不变的情况下,由出口总额变化带来的碳排放量变化。
1.2数据来源与处理本文中的工业分行业增加值、分行业能源消耗量以及出口贸易总额数据均来源于2005年、2009年和2013年的《中国统计年鉴》,分行业出口贸易额数据来源于《中国工业经济统计年鉴》,要说明的是这里的分行业出口贸易额选取的是大中型工业企业的出口贸易额。为了剔除价格因素的影响,分别用居民消费价格指数和工业品出厂价格指数平减出口贸易额和工业增加值数据。鉴于统计口径的不一致及数据的可获得性,本文借鉴前人文献的分类方法,将中国主要工业分类归并调整为14个行业,具体如表1所示。
1.3行业碳排放量测算为计算各主要工业行业的碳排放强度数据,进而计算出口贸易影响碳排放的技术效应,有必要经测算获得各工业行业的行业碳排放量数据。本文将采用方程(3)所示的计算公式,通过一次能源消耗量及其碳排放系数来估算各主要工业行业一次能源消费活动的二氧化碳排放量。其中,C为行业碳排放量,E表示一次能源(煤炭、石油、天然气)的行业消费量,F为一次能源的碳排放系数。通过搜集不同机构研究确定的能源碳排放系数,取其平均值,确定煤炭、石油和天然气能源的碳排放系数F分别为0.728,0.549,0.416。
2出口贸易对碳排放量影响的因素分解分析
2.1结构效应根据模型(2)的计算方法,将2008年相对2004年、2012年相对2008年各主要工业行业的出口份额变化量,分别与2004年和2008年该行业的碳排放量相乘,加总后即得到出口规模和碳排放强度不变的情况下,在2004~2008年和2008~2012两个计算期内,主要工业行业由于出口结构变动而引起的碳排放量变化,计算结果如图1、图2和图3所示。由图1、图2和图3可以看出,在第一个计算期内,我国工业行业出口商品结构发生了很大的变化。其中,出口份额下降较多的行业有服装鞋帽制造业和纺织业,由此带来的碳减排量分别为142.002万吨和1536.27万吨。值得注意的是,煤炭、石油和天然气开采业出口份额的减少量虽然不是最多的,但其对我国工业碳排放量的增加发挥了最大的抑制作用,减排量为299.28万吨,此外,一些加工制造业出口份额的小幅降低也为碳减排起到了积极作用。出口份额增长较快的行业包括通信设备及其他电子设备制造业、交通运输设备制造业和金属冶炼及压延加工业。其中,通信设备及其他电子设备制造业与交通运输设备制造业属于技术密集型产业,这种行业的能源利用率高且碳排放量低,即使出口份额增长很快,带来的碳排放量占总量的比重并不大。而金属冶炼及压延加工业是加工制造行业,由该行业出口份额变动带来的碳排放增量最多,多达21006.23万吨。总的来看,在2003~2007年这一计算期内,出口商品结构的变化使碳排放量增加了20140.03万吨,结构效应为正。通过以上分析可以看出,我国工业行业的出口贸易结构处于从轻纺制品行业向机电产品和高新技术品行业转变的过渡阶段,出口商品结构已经在朝着清洁化的方向发展。从图4、图5和图6可以看出,在第二个计算期内,出口份额增长较快的行业有交通运输设备制造业、电气机械及器材制造业和通信设备及其他电子设备制造业,这主要是因为我国在这些年里逐步发展了机电产品和高新技术品的出口,由此带来的碳排放增量分别为819.425万吨、154.5555万吨和274.29万吨。由于这些行业本身属于技术密集型的低碳行业,所以由此引起的碳排放增量并没有对环境造成很大影响。出口份额减少的行业包括金属冶炼及压延加工业,金属制品业,金属、非金属矿采选业和煤炭、石油、天然气开采业,其中金属冶炼及压延加工业出口份额的调整对降低碳排放做出了巨大贡献,碳排放量减少了17810.1万吨。2007~2011年处于“十一五”规划期间,总的来看,在这一计算期内,工业行业出口结构不断向低碳低能耗转变,工业行业的碳减排起到了成效,减排量为167.81万吨,结构效应为负。由此可以说明,此计算期内,我国始终坚持以资本和技术密集型行业为主的出口结构,把减少资源密集型产品出口,作为优化出口产业结构的主要方向。结合这两个计算期来看,在第一个计算期内,我国初步确立了工业碳减排意识,但减排成效尚不明显。在第二个计算期内,各主要工业行业已基本实现了向高新技术产品出口的结构转变,并取得了较显著的碳减排成效。
2.2技术效应碳排放强度也称碳强度,是指单位国内生产总值的二氧化碳排放量。该指标主要是用来衡量一国经济同碳排放量之间的关系,如果一国在经济增长的同时,每单位国内生产总值所带来的二氧化碳排放量在下降,那么说明该国就实现了一个低碳的发展模式。鉴于本文的研究对象是各主要工业行业,因此这里的碳强度是指单位工业增加值中包含的二氧化碳排放量。根据模型(2)的计算方法,结合两个计算期各主要工业行业的行业出口额与碳排放强度变化量,二者相乘再加总便可得出主要工业行业出口对碳排放影响的技术效应,计算结果如图7、图8和图9所示。由图7、图8和图9中的碳强度数据可知,2004~2008年和2008~2012年两个计算期内,碳排放强度都较大的行业包括煤炭、石油和天然气开采业,金属冶炼及压延加工业,非金属矿物制品业,化学原料及其制品和造纸印刷及文体用品制造业,这些高碳排放行业以资源密集型和加工制造行业为主,其生产效率和排污处理水平较低,伴随着能源消耗而产生的碳排放量也较大。碳强度维持在较低水平的清洁型工业行业主要包括通信设备及其他电子设备制造业、电气机械及器材制造业,交通运输设备制造业,服装鞋帽制造业和金属制品业。总的来看,各主要工业行业的碳排放强度总体呈下降趋势,其中资源密集型和重度污染行业如煤炭、石油和天然气开采业,金属、非金属矿采选业,非金属矿物制品业和化学原料及其制品和医药制造业表现尤为显著。具体而言,第一个计算期内碳强度下降最多的行业依次为煤炭、石油和天然气开采业,非金属矿物制品业,金属、非金属矿采选业,金属冶炼及压延加工业和化学原料及其制品和医药制造业,由此带来的碳排放量分别减少了191.1万吨,215.83万吨,34.01万吨,295.23万吨和327.04万吨。在第二个计算期内,非金属矿物制品业仍保持着碳排放强度的大幅减少并跃居减幅量首位,给工业行业碳减排起到很大的推动作用。到第二个计算期结束,14个主要工业行业中有13个行业的碳强度水平已经降低到每亿元1万吨以下,表明我国在节能技术上的进步,使得工业行业获得了良好的减排效果,一些行业如各类机械、设备和器材制造行业的碳排放强度已经接近每万吨0万吨。综上所述,由于碳排放强度的变化,在第一个计算期内碳排放量减少了1233.08万吨,技术效应为负,在第二个计算期内碳排放量减少了1809.81万吨,技术效应为负。这说明在过去这两个计算期内,我国工业生产的环境保护意识明显增强了,工业生产的节能减排技术得到了大力的发展与应用,对国家的碳减排和环境保护起到了积极作用。
2.3规模效应根据模型(2)的计算方法,将2008年相对2004年、2012年相对2008年各主要工业行业的出口增长率,分别与2004年和2008年该行业的碳排放量相乘,加总后即得到出口结构和碳排放强度不变的情况下,在2004~2008年和2008~2012两个计算期内,主要工业行业由于出口规模变动而引起的碳排放量变化,计算结果如表2所示。在第一个计算期内,除金属、非金属矿采选业外,其余主要工业行业的出口规模都大幅增加,其中金属冶炼及压延加工业,交通运输设备制造业,电气机械及器材制造业,通信及其他电子设备制造业的出口增长率均超过了100%,通信及其他电子设备制造业更是高达730.01%。因而在该计算期内,由于出口规模的变动而带来的碳排放增量大大超过减排量,总计2230144.01万吨,规模效应为正,但一些机电产品和高新技术品行业的出口行业的出口规模显示出大幅度的增加。在2007~2011年也即第二个计算期间,各主要工业行业的出口规模均大幅缩小,其中,煤炭、石油和天然气开采业,金属、非金属矿采选业,金属制品业和金属冶炼及压延加工业,其出口增长率分别下降至-60.02%、-64.07%、-1.80%和-18.51%,由此带来的碳排放减量分别为792701.55万吨、37204.81万吨、352.78万吨和339860.07万吨,为工业碳减排做出了巨大贡献。在此计算期内,主要工业行业碳排放减少了204136.20万吨,规模效应为负,说明“十一五”期间,我国工业坚持走信息化道路,扩展机电产品和高新技术品行业的出口,提高了资源利用效率,加强了排污控制,工业碳减排取得了显著成效。3.4总效应综合来看,主要工业行业出口贸易的碳排放量变化是出口结构、生产技术和出口规模共同作用的结果。由表3可知,在第一个计算期内,主要工业行业出口对碳排放影响的总效应为正,其中出口规模的扩大是导致碳排放量上升的主要原因,技术进步给碳减排带来了积极作用,结构效应虽为正,但结合上述分析可知出口结构已经处于向低能耗、低碳排放的清洁化方向转型的过程中。在第二个计算期内,总效应为负,其中出口规模的减小是导致碳排放量下降的主要原因,而技术进步是减少碳排放的关键因素,出口结构的变化给碳减排起到了积极作用。
3结论与建议
出口贸易一方面促进经济飞速增长,另一方面也导致碳排放大量增加,对环境造成破坏。笔者运用因素分解法,从结构、技术和规模三个方面对工业行业出口的碳排放效应进行分析,得几点重要结论,在2004~2008年和2008~2012年两个计算期内,出口规模是影响碳排放量变化的主要因素。在第一个计算期内,出口贸易对碳排放影响的规模效应为正,结构效应为正,技术效应为负,在第二个计算期内,出口贸易对碳排放影响的规模效应为负,结构效应为负,技术效应为负。节能减排生产技术是影响碳排放量增减的关键因素,不断调整出口结构使其向清洁化转变是促进碳减排的必然选择。因此,我国在发展对外贸易的前提下,想要使工业行业出口与碳减排目标相容,使对外贸易与环境保护协调发展,关键要在结构效应和技术效应方面做出努力。
碳减排技术篇4
【关键词】低碳城市 评价指标体系 低碳建筑 低碳生产 低碳政府
从1990年开始,全世界就已经开始重视温室效应及其带来的各种问题,联合国开始推动国际气候问题的谈判,并且于1992年联合国通过《联合国气候框架公约》。2005年2月16日,联合国正式签署《京都议定书》,开启全人类温室气体减排的工程,《京都议定书》强调附件I国家应承担减排义务,创建了“京都三机制”,即:国际排放权交易(IET)、联合履行(JI)、清洁发展机制(CDM),努力促进世界“碳交易”和提高减排效率。
我国作为世界第二大经济体和最大的发展中国家,同时也是世界第二大碳排放国,如何有效降低温室气体排放,转变经济发展方式,人与自然实现和谐发展,对我国实现可持续发展目标来说至关重要。
一、低碳城市的概念、发展目标以及主要内容
我国学者在根据低碳城市构建的主要内容,分析低碳城市发展的条件,提出相应不同的低碳城市概念。
付允(2008)在《低碳城市的发展路径研究》一文中提出,低碳城市是“通过在城市发展低碳经济,创新低碳技术,改变生活方式,最大限度减少城市的温室气体排放,彻底摆脱以往大量生产、大量消费和大量废弃的社会经济运行模式,最终实现城市的清洁发展、高效发展、低碳发展和可持续发展。”
戴亦欣(2009)的《低碳城市的概念沿革与测度初探》中,规定低碳城市的概念为“城市经济以低碳产业和低碳化生产为主导模式,市民以低碳生活为理念和行为特征、政府以低碳社会为建设蓝图的城市。低碳城市发展旨在通过经济发展模式、消费理念和生活方式的转变,在保证生活质量不断提高的前提下,实现有助于减少碳排放的城市建设模式和社会发展方式。”
刘志林(2009)进一步将政府政策归纳到低碳城市的建设中,认为低碳城市“强调以低碳理念为指导,在一定的规划、政策和制度建设的推动下,推广低碳理念,以低碳技术和低碳产品为基础,以低碳能源生产和应用为主要对象,由公众广泛参与,通过发展当地经济和提高人们生活质量而为全球碳排放减少做出贡献。”
依据李金兵(2010)、唐方方(2010)提出的低碳城市系统模型,我们可以了解低碳城市的主要构成因素以及相互之间的关系。
模型依据构成低碳城市所涉及的不同视角,具体包括:低碳经济视角、能源视角、城市规划视角、交通视角和内涵生产生活及建筑在内的其他视角,按照城市运行结构的特征,分析低碳城市系统运行的情景。模型指出由于城市是各个子系统和具体要素构成的综合复杂系统,因此低碳城市也是不同主体低碳化行为运行并相互影响作用的结果。城市子系统之间的行为会相互影响,子系统之间的耦合关系、组织秩序、稳定性以及变动程度直接影响LCS系统运行。由此可见,低碳城市系统是一系列线性和非线性反馈作用的结果,统一而不可分割,只有城市的生态、经济、生活共同促进低碳城市运行和发展,才可以保证人类可持续发展的实现。
综上所述,由于城市建设是涉及经济、社会、技术、政策以及观念等要素综合作用的结果,加之从内容上分析城市建设是城市空间形态、经济社会发展和土地利用整体发展规划的结果。所以,低碳城市的发展目标可以归纳为:以低碳技术和清洁可再生能源为支撑,以政府低碳政策和相关法律为指导,通过改变并促进城市经济、生活、结构以及观念向低碳化方向发展,努力实现能源使用低碳化、产业低碳化、消费低碳化、交通低碳化和形成低碳文化观念,从而明显降低城市碳排放规模和能源消耗,在长期内使城市向“低能耗、低污染、低排放”和“高效能、高效益、高效率”的方向发展。
二、低碳城市的主要特征
根据城市系统运行的模型图,我们可以观察到组成城市系统各种具体要素和子系统,了解到低碳城市建设的重点领域和具体行业。同时归纳出低碳城市的基本特征,主要包括:
(一)开放性
在碳减排的国际背景下,低碳城市发展不仅需要各种主题的积极参与,同时更加需要建立适应国际环境、符合国际标准的开放型低碳城市,努力推进全球变暖问题的解决。
(二)多样性
由于城市建设涉及不同的主体,因此不同主体的低碳化策略、减排目标和方式以及具体的政策都是不同的,低碳城市建设需要具体分析各主体的能源消耗以及碳排放的特点和影响。
(三)动态性
低碳城市的建设是国家可持续发展的长期战略的重要组成部分,国家内部的以及国际环境的各种变化以及科学技术、能源结构等客观因素都会影响国家低碳战略的实行。
(四)技术性
节能减排、碳汇、碳吸收、清洁能源和可再生能源等低碳技术是低碳城市有效运行的基础和保障,因此国家低碳城市的建设必然包含各种尖端技术的应用和普及。
(五)经济发展稳定性
低碳城市的发展基础就是在城市实行低碳经济,由此可见发展低碳城市必须要合理地调整经济发展与碳减排之间的关系,既要确保温室气体减排的实现,又不能使经济发展受到明显的影响。并且,低碳经济在长期内是低碳城市的发展动力,为低碳城市提业发展、经济增长和就业机会。
(六)社会生活和谐性
在低碳城市内形成低碳生活氛围和节约能源的低碳观念是低碳城市的重要特征。因此,低碳城市发展一方面需要改变居民以往的“高能耗、高排放”的生活习惯,但是居民的生活习惯和文化传统制约低碳城市的建设,所以一个有效运行低碳城市必须要使居民生活和文化传统同节能减排战略相协调,既保证低碳城市的运作,也要确保居民生活的舒适与便利。
(七)生态平衡性
低碳城市的本质目标就是要有效减少温室气体排放,防止温室效应继续恶化,保证人类的可持续发展。实现城市在长期内“零排放”状态,城市的碳汇能力和碳循环直接决定城市的碳排放余额。提高城市植被覆盖率,建设绿色生态环境,提高城市碳吸收和碳捕获能力,实现城市内部的碳循环。
三、低碳城市系统的具体分析
(一)低碳能源
低碳能源问题贯穿于低碳城市的建立、运作和发展的各个环节,决定着一国低碳城市发展的水平和未来发展趋势。根据能源在城市系统的循环路径可知,各种能源通过城市能源系统,为城市运行提供动力,城市的排放系统将消耗燃料产生的废物排出。因此,考察低碳城市的能源指数,从能源供应角度要分析能源结构和化石燃料的存量;从能源消耗角度,要分析能源消耗的碳排放水平和低碳能源的产出水平。
目前,低碳能源主要包括清洁能源、可再生能源两大类,例如:太阳能、风能、核能、地热、水利发电等。目前在能源研究方面,太阳能发展集中于光伏发电技术,核能发展的重点在中国“第四代”核电技术的研发和重水反应堆的利用,风能发电的主要焦点是风力涡轮机技术的改进,热能技术主要分为蒸汽型地热发电和热水型地热发电。
(二)低碳技术
低碳技术为低碳城市建立和发展提供重要保障和支持。低碳技术目前可以分为三类,即:减碳技术、无碳技术、去碳技术。减碳技术是指在高能耗、高排放行业和居民生活里节能减排技术的利用以及石油、煤炭、天然气勘探开发技术的运用情况;无碳技术是指核能、风能、太阳能、水利、生物质能等低碳能源的开发和生产技术;去碳技术是指主要是指“碳捕获”和“碳封存”技术等具有大规模减少二氧化碳排放的技术。目前,碳捕获和封存技术主要有四种类型:燃烧后分离(烟气分离)、燃料前分离(富氢燃气路线)、富氧燃烧和工业分离。减碳和去碳技术例如像生产领域的模块化和轻量化的复合加工生产设备、技术利用等。
(三)低碳建筑
在城市建设中,住宅建造和基础设施建设的碳排放是城市的重点碳源之一,建筑的材料和设备、平均占地面积以及建筑内部使用的各种用品直接影响房屋和基础设施的碳排放水平。
当前,英国和日本是低碳建筑的主要倡导者和实施者,在建筑低碳化领域内,建筑师和设计者的主要方法是:就地取材降低交通运输,房屋采用无铅化设计并且增加太阳能和日光的使用规模和效率,使用低辐射玻璃,设计引入阳光的方式降低建筑照明的能耗。低碳建筑现在处于试验阶段,受制于投资规模和技术的限制,目前低碳建筑在商业建筑和居民住宅领域并未得到普及。
(四)低碳交通
随着中国城市化进程的不断加快和城市规模的扩张,以及私家用车的不断普及,交通运输的能源消耗和废气排放已经成为影响城市环境和低碳城市建设所面临的重大问题。近年来,主要发达国家已经开始研究纯电动汽车和混合动力汽车等低碳交通工具以及相应的普及策略,我国目前基本已经掌握了电动汽车的技术,并且经济开始在公共交通领域投入使用。
同时,公路系统的改革也为城市低碳交通发展提供重要的制度和物质保障。公路体系通过充分利用地区的原有地貌,充分利用地层结构特征进行建设,实现低碳交通发展。
(五)低碳生产生活
城市企业生产和城市居民生活是城市的最大碳源,有效降低城市生产生活的碳排放和能源消耗是低碳战略的最重要的内容。在城市居民生活方面,低碳化主要体现在居民消费低碳化和能源消耗低碳化,而能源消耗主要体现在居民能源使用效率和再生能源的使用强度。在居民消费问题上,低碳化消费的原则是在不对居民生活造成明显负面影响的前提下,有效减少生活碳排放量,促进生活理念和方式的转变,走绿色生活道路。因此,低碳化的生活既要确保居民的正常生活秩序和规律,又要通过改变消费理念和行为等方式降低居民生活的碳排放。其中包括:提高步行、自行车、公交
碳减排技术范文
本文2023-12-24 15:18:06发表“文库百科”栏目。
本文链接:https://www.wenkubao.com/article/6208.html