重金属污染研究现状范文

栏目:文库百科作者:文库宝发布:2023-12-19 17:29:45浏览:558

重金属污染研究现状

重金属污染研究现状篇1

关键词:中药;重金属;评价方法;述评 

DOI:10.3969/j.issn.1005-5304.2016.02.040 

中图分类号:R282 文献标识码:A 文章编号:1005-5304(2016)02-0134-03 

Research Status of Heavy Metal Pollution and Evaluation Methods of Traditional Chinese Medicine ZHAO Rong, YANG Hui-xia, PU Jin, WANG Dan-jie, ZENG Guang (Beijing University of Chinese Medicine, Beijing 100029, China) 

Abstract: Heavy metal pollution in traditional Chinese medicine has become a concerned hot issue both at home and abroad. Understanding and mastering the situation of heavy metal pollution in traditional Chinese medicine is not only beneficial to the general situation of judgment of heavy metal pollution, but also provides the data foundation for the development of relevant policies. In this article, the current heavy metal pollution of traditional Chinese medicine and its evaluation methods were summarized, in order to provide supports for the follow-up systemtic evaluation of heavy metal pollution in traditional Chinese medicine. 

Key words: traditional Chinese medicine; heavy metal; evaluation methods; review 

土壤是中药材生长最基本的要素,为其生长提供了有机质和矿物营养元素。因此,一般说来土壤重金属污染越严重,中药材受重金属污染也就越严重,其产量和品质也越差。为此,笔者对近十几年的相关研究进行总结,为进一步系统评价我国中药材重金属污染提供参考。 

1 中药材重金属污染研究 

1.1 现状 

近几年的研究表明,我国中药材重金属超标的严峻形势不容忽视。2011年,邹氏等[1]对“浙八味”品种生长调查发现,浙贝母、温郁金、白术、白芍镉(Cd)超标情况相对严重,尤其温郁金100%超标,有的甚至超过标准数倍。冯氏等[2]对100种中药材进行测定,结果显示铅(Pb)、Cd、砷(As)等有害重金属元素存在于大部分的中药材中。王氏等[3]对金银花、山楂、红花等10种中药材所含As、Cd、铜(Cu)、汞(Hg)、Pb进行了测定,发现除山楂外,其余9种中药材均超标。其中金银花As超标率为24%,Hg超标率为47%,Cd超标率为24%,Pb超标率为6%;积雪草Cd超标 

通讯作者:曾光,E-mail:zengg1234@163.com 

率为100%,As和Pb超标率为18%,Cu超标率为9%。杨氏等[4]对黔东南州9种中药材重金属污染情况进行了评价,结果7个品种重金属超标,其中金银花Pb和Cd含量超标、黄柏Pb含量超标。颜氏等[5]对陕西和山东产丹参进行了重金属检测,结果两地产丹参均含As、Hg、Cu、Cd、Pb等,其中Cu超标相对较为普遍。陈氏等[6]对医院药房常用10种中药饮片进行了As、Hg、Pb、Cd、镍(Ni)测定,结果在35个样本中有18个样本的重金属含量超标,占总样品量的51.4%。其中泽泻、白术Cd超标,黄芪、丹参、甘草、泽泻Hg超标,丹参、柴胡、甘草、当归Ni超标;按品种计,10个品种有7个受污染,比例达70%。采自药店的10个样品中有4个受重金属污染,比例为40%。 

由此可见,目前我国中药材重金属污染形势十分严峻,尤其是近30年来,随着城市化和工业化的快速发展,大量未经处理的生活污水和工业废弃物任意排放,以及不合理使用化肥农药,导致我国中药材重金属超标现象严重,品质不断下降。因此,解决中药材重金属污染的问题迫在眉睫。 

1.2 污染来源 

1.2.1 中药材自身特性 中药材对某些金属元素具有生物富集能力,在按自身需要特定比例主动吸收同时,对土壤中富集元素也会相应地被动吸收,这是导致中药材重金属超标的重要途径。如顾氏等[7]研究了川附子与土壤中重金属元素的关系,发现重金属的存在形态决定了川附子对土壤中重金属的吸收。 

1.2.2 工业废弃物 这是土壤重金属污染的主要来源之一。工业废弃物对中药材重金属污染主要表现为:一方面,工业生产将大量含重金属的有害气体排放到空气中,植物叶面通过主动或被动吸收,将废气中的有害物质吸收;另一方面,含有重金属的废水、固体废弃物通过灌溉,造成中药材的间接污染[8]。

1.2.3 农药和化肥 农药一般含有As、Hg、Pb、Cu等重金属元素,用于喷洒中药材时,易被其吸收并渗透于根茎、叶片及果皮等组织内,造成重金属污染。此外,中药材在种植过程中需使用肥料,其中磷肥的大量使用,会明显增加土壤Cu、Cd等重金属元素的含量,导致中药材被污染[9]。 

1.2.4 其他 因容器或辅料含有重金属,中药材在加工、炮制过程中也可能被污染。顾氏等[7]研究发现,炮制后的川附子在As、Cu等重金属元素的含量高于炮制前。另外,为防治鼠害、霉变等,中药材在存储前会使用重金属制品的熏蒸剂,这也是造成中药材重金属污染的原因之一。 

2 中药材重金属污染评价方法 

笔者通过查阅近十几年文献,发现目前对中药材重金属污染的常用评价方法有2种:一是以2001年国家颁布实施《药用植物及制剂外经贸绿色行业标准》[10]重金属限量值或《中华人民共和国药典》[11]重金属限量值为标准,评价中药材重金属的超标率;另一种方法是评价中药材重金属污染程度的大小,因中药材重金属污染可能既是单一元素也是多元素共同作用的结果,因此,须相应采用单项污染指数或综合污染指数法评价中药材重金属污染程度。 

2.1 超标率的计算 

中药材重金属超标率,是指所取样本中重金属含量超过了《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》中重金属限量值标准的样本的百分数,是反映中药材重金属污染状况的指标之一。评价标准参照《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》重金属的限量值,两者关于重金属限量值是一致的,即Pb≤5 mg/kg,As≤2 mg/kg,Hg≤0.2 mg/kg,Cd≤0.3 mg/kg,Cu≤20 mg/kg。 

在我国,计算重金属超标率是评价中药材重金属污染普遍使用的一种方法。叶氏等[12]参照《药用植物及制剂外经贸绿色行业标准》,对贵州省4个种植基地的5种中药材所含Pb、Cd、Hg、As、Cu等重金属含量进行了测定分析。结果Cd的超标率最严重,茎叶类药材Cd的超标率最高达84%;其次是Cu,茎叶类药材超标率为76%,花果类药材超标率为60%。李氏等[13]对中药材41种无机元素的总含量进行了测定,并参照《药用植物及制剂外经贸绿色行业标准》分析了重金属元素超标情况,结果Cu、Pb、As、Cd、Hg的超标率分别为5.2%、4.7%、2.4%、20.0%、1.3%。高氏[14]测定7个主产地甘草中Ni、Cu、Zn、As、Cd、Hg、Pb、铋共8种重金属的含量,并将测定结果与《中华人民共和国药典》重金属限量标准进行对比,结果发现As、Hg、Pb是造成甘草重金属超标的主要因素。 

2.2 单项污染指数和综合污染指数法 

中药材的重金属污染可能由单一重金属元素所致,也可能是由多种重金属元素共同作用的结果。目前单项污染指数是国内普遍采用的方法之一,但单项污染指数只能反映某一种重金属元素对中药材的污染。为了能够全面反映各重金属对中药材的作用,并突出高浓度重金属元素对中药材质量的影响,还需采用综合污染指数法对中药材重金属污染进行评价。 

2.2.1 单项污染指数法 单项污染指数定义为Pi=Ci÷Si,式中Pi为中药材中重金属元素i的污染指数,Ci为中药材中重金属元素i的实测浓度,Si为中药材中重金属元素i的限量标准值(通常以《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》重金属的限量值为评价标准)。当Pi≤1时,表示中药材未受污染;Pi>1时,表示中药材受到污染,且Pi越大则中药材受到的污染越严重。 

2.2.2 综合污染指数法 综合污染指数能全面反映重金属对中药材的污染,并突出了高浓度重金属元素对中药材的影响。其定义为P综合= ,式中Pave为中药材中各单项污染指数之和的平均值,Pmax为中药材中各单项污染指数中的最大值。当P综合≤1时,表示未受污染;P综合>1时,表示受到污染,且P综合越大则表示受到污染越严重。 

迄今,有不少学者采用单项污染指数和综合污染指数法对中药材重金属污染情况进行过研究。如褚氏等[15]研究了河北省安国市种植区中药材重金属污染情况,结果发现As含量0.04~1.02 mg/kg,未发现超标样品,但紫菀平均污染指数最高为0.28;Hg含量0~0.244 mg/kg,有一产地为安国北郊的白芷样品超标,其污染指数为1.22;Pb含量0.06~7.10 mg/kg,有一产地为西王奇的北沙参样品超标,其污染指数为1.42。杨氏等[4]对黔东南州9种中药材重金属污染情况进行了评价,结果显示其重金属平均污染指数相差较大,综合污染指数相差较小。在平均污染指数中,Pb最大,其最大值高达4.94;其次为Cd,最大值2.40;而Hg和As的平均污染指数均<1.0。说明黔东南州部分地区中药材的主要污染因子是Pb,其次是Cd,而Hg和As则基本无污染。另外,从综合污染程度看,9种中药材中钩藤受到中度污染,杜仲、金银花受到轻微污染,其余6种未受到污染。秦氏等[16]对贵州省11个“中药材生产质量管理规范”(GAP)基地的26种155批道地中药材样品重金属含量进行了测定与评价,结果平均污染指数大小顺序为Cd>Cu>As>Pb>Hg,茎叶类的艾纳香和块根类的淫羊藿根综合污染指数均>1,说明在所调查的样品中只有艾纳香和淫羊藿根受到重金属轻微污染,大部分未受到污染。由此可见,单项/综合污染指数法应用于评价中药材重金属污染程度是一种较为可靠的方法。 

3 小结 

近年来,我国学者在中药材重金属污染方面开展了一系列相关研究,并取得一定成绩,但目前的工作主要针对中药材中微量元素或有毒重金属含量测定,缺乏系统性评价。 

重金属污染研究现状篇2

关键词:垃圾场;渗滤水;重金属;污染

基金项目:云南省应用基础研究自筹经费项目(编号:2010ZC090)资助

作者简介:吴 明(1987―),女,西南林业大学环境与科学工程系硕士研究生。

通讯作者:贝荣塔(1965―),男,广西昭平人,硕士,副教授,主要从事土壤学、环境污染及环境生态等方面的教学与研究工作。

中图分类号:X143

文献标识码:A

文章编号:16749944(2011)10009303

1 引言

自20世纪20年代以来,随着采矿、冶炼、化工、电镀、电子等行业的发展,以及民用固体废弃物不合理填埋和堆放,大量化肥、农药的施用,使得各种重金属污染物进入到生态环境当中。许多发展中和发达国家,都面临着同样严重的重金属污染问题[1]。据我国环保部门统计,从2009年至今,我国已经连续发生30多起特大重金属污染事件。从2006年甘肃徽县铅中毒事件到2010年江苏盐城大丰市儿童血铅事件;从2009年湖南娄底双峰县某公司违法转移铬渣引起铬污染事件到2011年云南省铬渣入水库事件[2],重金属污染事件的频繁发生,已经对人们的生存构成威胁,因此引起人们高度重视。

重金属是指原子密度大于5g/cm3的金属元素,大约有40种,主要包括Cd、Cr、Hg、Pb、Cu、Zn、Ag、Sn等[3]。因此,一般认为不超过一定浓度的重金属都不会对人体造成危害。但是重金属由于不能被生物降解,通过食物链的富集后进入人体。当达到一定浓度后就会对人体造成伤害[4]。实验证明铅是重金属污染中毒性较大的一种。一旦进入人体很难排除。铅不仅能直接伤害人的脑细胞,特别是胎儿的神经系统,造成先天智力低下,甚至有致癌、致突变作用[5]。镉可以导致高血压,引起心脑血管疾病,破坏骨骼和肝肾,引起肾功能衰竭。砷是砒霜的组成之一,有剧毒,会致人迅速死亡,长期少量接触,会导致慢性中毒,并有致癌性[6]。因此,加强对重金属污染治理的研究对社会的可持续发展具有重要的意义。

2 野外采样与测试分析

2.1 研究区域自然概况

东郊垃圾填埋场位于昆明市东南方向官渡区阿拉乡白水塘村,是目前昆明市主城区生活垃圾处理两大基地之一。该区域位于白水塘村东南方向,东经102°51′36″~102°52′12″,北纬24°58′48″~25°0′0″,东西宽约1 000m,南北长约500m,占地面积约为0.48km2。该区域地形复杂,平均海拔为2 000m,属低纬度高海拔地区。

本区域气候属北纬亚热带气候,夏无酷暑,冬无严寒,四季如春,分为明显的干、湿两季。平均气温14.5℃,最热月平均气温19.7℃,最冷月平均气温7.5℃。全年降水量约1 031mm,相对湿度为74%。全年无霜期近年均在240d以上。全年晴天较多,日照数年均2445.6h,日照率56%.终年太阳投射角度大,年均总辐射量达129.78kCal/cm2,其中湿季62.78kCal/cm2,干季67kCal/cm2。该区域自然土壤为红色土壤,堆填区无植被覆盖,垃圾场四周植被稀疏,多为草本植物和小灌木,乔木以低龄松树为主。

2.2 样品采集

实验材料来源于昆明市东郊垃圾填埋场的渗滤水处理厂。该处理厂采用的处理方法是利用露天过滤池对渗滤水进行过滤,同时进处理车间进行处理,然后将处理后的水排入处理后水池,最后排入环境。

在渗滤水处理厂中布点采样,布点见图1。用塑料瓶分别在各池和蓄积雨水地采集渗滤水水样。在二级未过滤水池、一级未过滤水池、原水池、处理后水池以及蓄积雨水地取的水样分别标号为1、2、3、4、0,其中1、2、3、4号水样分别取4个重复,0号水样取两个重复。水样存放于实验室内,待分析测定。

2.3 测试分析

2.3.1 水样中铜、锌、铅、镉等测定分析过程

铜、锌、铅、镉等金属的测定分析采用原子吸收分光光度法[7~8]。使用仪器是北京瑞利原子吸收分光光度计[9]。水样预处理:取50mL水样放入100mL烧杯中,加入浓硝酸5mL,在电热板上加热消解(不要沸腾)。蒸至10mL左右,加入5mL硝酸和2mL高氯酸。继续消解,直至1mL左右。如果消解不完全,再加入5mL硝酸和2mL高氯酸,再次蒸至1mL左右。取下冷却,加水溶解残渣,通过中速滤纸滤入50mL容量瓶中,用蒸馏水稀释至标线。分别在原子吸收分光光度计上测定吸光度[10]。

2.3.2 水样中砷的测定分析过程

水样中砷的测定采用二乙氨基二硫代甲酸银分光光度法[7~8]。使用的仪器是北京普析TU-1800紫外分析光度计[9]。取50mL水样放入100mL烧杯中,加入4mL浓硫酸和5mL浓硝酸。在电热板上加热消解至产生白色烟雾。如溶液不澄清,可再加5mL浓硝酸,继续加热至溶液澄清。取出冷却,定容到50mL容量瓶中。把消解液倒入砷发生器中(预先接好),加入4mL碘化钾,2mL氯化亚锡,摇匀,放置15min。取5mL吸收液置于干燥的吸收管中,插入导气管,与砷发生器中迅速放入4g无砷锌粒,并立即将导气管与发生器连接好(保证连接处不漏气),在室温下反应1h,使砷完全释出。反应完全后,用三氯甲烷将吸收液体积补足到5mL[10]。

3 结果与分析

3.1 渗滤水中主要重金属成分及含量

通过用北京普析TU-1800紫外分析光度计和北京瑞利原子吸收分光光度计分析,得到了垃圾渗滤水中的主要重金属成分及含量(表1)。

注:0.000 0代表未检出

由表1看出,昆明市东郊垃圾填埋场渗滤水处理厂中渗滤水中主要重金属包括砷、铬、铜、锌、铅、镉、锰。从平均值可以看出,重金属含量从高到低依次是铅、锰、锌、镉、砷、铬、铜。随着分级的处理,1、2、3号池中重金属砷、铬、铜、锌、锰的含量逐步降低,镉的含量有少量降低,而铅的含量有所波动。在4号池中,除了铅的含量不稳定外,各重金属的含量均是降低的。由0号水样数据可以看出,除了铅,其他重金属含量均与4号相近。由此,可以推断出东郊垃圾场渗滤水处理厂所采用的露天蒸发等处理技术对铅的去除力不明显,对其他金属的去除力较明显。

3.2 渗滤水中重金属污染状况

3.2.1 地表水环境质量

地表水环境质量标准(GB3838-88)[2]规定,依据地面水水域使用目的和保护目标将其划分为5类。该区域用水属于农业用水区及一般景观要求水域,应该执行Ⅴ类标准。本区域中地表水包括过滤池池水和蓄积雨水。根据标准限制不同,将数据分为两组,分别对比(表2)。

3.2.2 砷、铬、镉达标状况

结合图2和表2,可以看出,水样在进处理车间前,即水在过滤池内时,除铬外,其他重金属的含量均不能达到Ⅴ类标准。而蓄积雨水中,镉含量不达标,砷、铬含量达标。

3.2.3 铜、锌、锰、铅达标状况

结合图3和表2,可以看出,水样在过滤池内时,铅的含量严重超标,铜和锌含量微小,锰的含量只在原水中超标。而蓄积雨水中,除铅外,其他重金属含量均远远小于标准值。

可以得出,从重金属方面看,水样在进处理车间前,砷、镉、铅含量达不到Ⅴ类标准,其他重金属达标;在蓄积雨水中,镉、铅达不到Ⅴ类标准,其他重金属均达标。渗滤水水质达不到Ⅴ类标准,处理后也不能达到Ⅴ类标准,不能用于用水。蓄积雨水,也达不到Ⅴ类标准,可见当地地表水已被污染。

图3 铜、锰、铅、锌含量おお

3.3 渗滤水中重金属排放状况

根据污水综合排放标准(GB8978-88)[2],按地面水域使用功能要求和污水排放去向,对地面水水域和城市下水道排放的污水分别执行一、二、三级标准。该区域用水属于农业用水,对应标准中的一般保护水域,因此执行二级标准。将排放处测定值与测定标准进行比较,见表3。

表3 污染物最高允许排放浓度及测量数据比较mg/L

AsCuZnPbCdMnCr

排放处测定值0.0130.000 00.000 00.3650.096 30.098 50.884 6

第一类污染物0.51.00.11.5

第二类污染物(二级标准)1.05.05.0

结果达标达标达标达标达标达标达标

东郊垃圾场渗滤水处理厂处理后水样中7种主要重金属的含量均低于污染物最高允许排放浓度,可以排放进入环境中。从而推断出渗滤水原水必须经过处理后才能进行排放,否则会对环境造成重金属污染,因此垃圾场渗滤水处理厂的建设是非常必要的。

4 结语

昆明市东郊垃圾填埋场渗滤水处理厂中渗滤水中主要重金属包括砷、铬、铜、锌、铅、镉、锰。从平均值可以看出,重金属含量从高到低依次是铅、锰、锌、镉、砷、铬、铜。处理技术对铅的去除力不明显,其他重金属均较明显。可见该渗滤水处理厂需改进技术,加强对铅的去除能力。

从重金属方面看,水样在进处理车间前,砷、镉、铅含量达不到Ⅴ类标准,其他重金属达标;在蓄积雨水中,镉、铅达不到Ⅴ类标准,其他重金属均达标。

(1)渗滤水中含有多种重金属污染物,对于难去除的重金属应该特别对待,建议在露天蒸发过程中应对过滤池进行防渗处理。

(2)昆明在雨季时,降雨量较大,此时应该对渗滤池进行保护,以防正在进行过滤的渗滤水溢出,进入河水或者水库,污染更多水体。

(3)建议相关政府部门加强对垃圾场环境的宣传及管理工作,发动周边群众一起监督垃圾场的工作。

参考文献:

[1]

吕艳春.重金属急性毒性研究进展[J].科技信息,2009(32):329~330.

[2] 周建民.重金属污染现状[J].金属世界,2010(3):25~26.

[3] 王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005(3):596~605.

[4] 许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.

[5] 贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(1):39~42.

[6] 陈静生.环境地球化学[M].北京.海洋出版社,1989.

[7] 奚旦立,孙裕生,刘秀英.环境监测(修订版)[M].北京:高等教育出版社,2004.

[8] 国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.

[9] 贝荣塔,李丰伟,马 叶,等.污染河流悬沙与铜、锌污染相关性研究[J].环境科技,2009,22(4):4~6.

[10] 奚旦立,陆雍森,蒋展鹏.环境工程手册-环境监测卷[M].北京:高等教育出版社,1998.

Study on Current Situation of Heavy Metal Pollution in Landfill Leakage Water in Eastern Suburbs of Kunming City

Wu Ming,Bei Rongta,Li Jing

(Environmental science and engineering,Southwest forestry university;Kunming Yunnan 650224,China)

Abstract:Based on sampling and analyzing of the leakage water from landfill in the eastern suburbs of Kunming city,the elements and loading of heavy mental are analyzed,and the current situation of heavy metal pollution in leakage water are discussed.The results show that it has As,Cr,Cu,Zn,Pb,Cd,Mn in leakage water.Loading from high to low in turn is Pb,Mn,Zn,Cd,As,Cr,Cu.Processing technology of the lead removal forceis not obvious.After processing the leakage water,the loading of heavy mental fits Synthetical Draining Standard of Sewage (GB8978-88).But it doesnt reach surface water environment quality standards (GB3838-88) Ⅴ,thus the water could not be used.Local accumulated rainwater couldnt reach the standard,too,it proves thatThe local surface water has been polluted.

重金属污染研究现状篇3

关键词:重金属;内梅罗综合污染指数;环境质量;国道;稻田土壤;信阳市

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2013)24-6003-04

随着中国社会经济的发展和人们生活水平的提高,各种车辆急剧增加,带来土壤和环境的污染,主要污染源有汽车尾气、轮胎磨擦碎屑、发动机泄漏的机油、公路沥青等,部分污染物随路面径流进入公路两侧土壤[1],污染物中的重金属主要包括Pb、 Ni、Cd、As、Hg、Cu、Zn等[2-5]。这些污染物进入土壤中自然净化过程十分漫长,具有隐蔽性和不可逆性,难以被微生物降解,迁移性小而发生污染累积,并经水、植物等介质进入人体,最终影响到人类的健康,因而土壤重金属污染及其修复日益受到关注[6]。

中国学者们对京沪高速[7]、沪宁高速[8]、成渝高速[9]、沈大高速[10]、312国道[11]、107国道[12]等路段两侧土壤中重金属污染做了详细的研究,发现高速公路两侧土壤中重金属元素含量超出背景值,受重金属污染明显。本研究对312国道和107国道河南省信阳市境内路段两侧稻田土壤重金属污染现状展开调查和评价,了解信阳市境内国道两边稻田土壤环境质量状况,对于减少和预防农田受重金属污染的危害、保障粮食安全生产具有重要意义。

1 材料与方法

1.1 样品采集与处理

土样主要采集自河南省信阳市107国道和312国道边的主要水稻栽培区。信阳市主要为丘陵地带,农田面积不大,但每块农田比较平坦,所以采用棋盘式布点法,每块农田分别取10个耕层0~20 cm土样,四分法组成一个混合土样(1.0 kg),共26份土壤样品。土壤样品在风干室风干磨碎,用四分法分为两份,一份研磨过孔径20目尼龙筛,用于测定土壤pH,另一份研磨过孔径100目筛,用于测定土壤重金属(Cu、Zn、Pb、Cr、Cd、As、Hg、Ni)含量[13]。

1.2 土壤样品分析测定

pH采用酸度计法[14]测定,土壤重金属全量采用HCl-HNO3-HClO4-HF消解法[14]。Cd、Ni采用电感耦合等离子体发射光谱仪(ICP-AES Thermo iCAP6000系列)测定,Pb、Cr采用德国耶拿石墨炉型原子吸收分光光度计(ZEEnit600型)测定,Cu、Zn采用上海天美火焰型原子吸收分光光度计(AA6000型)测定,As、Hg采用北京吉天原子荧光光度计(AFS-930型)测定。样品测定采用20%样品平行样,并加入国家标准土壤样品(GSS-4和GSS-8)作为质量控制样品,质控样品相对误差小于10%。

1.3 土壤重金属含量评价方法

2.1 研究区土壤重金属含量的分布特征

信阳市312国道和107国道沿线主要水稻产区的稻田土壤重金属含量分布见图1。由图1可知,不同地点稻田土壤中重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn含量均呈不同程度的波状曲线,说明312国道与107国道沿线各路段稻田重金属污染存在一定的差异,这与钱鹏等[11]、王学锋等[12]的研究结果一致。Pb的最高含量为20.706 mg/kg,含量最高值出现在游河;Cd的最高含量为0.608 mg/kg,含量最高值出现在十三里桥;Cr的最高含量为61.091 mg/kg,含量最高值出现在胡族铺;As的最高含量为10.095 mg/kg,含量最高值出现在吴家店;Hg的最高含量为0.618 mg/kg,含量最高值出现在龙山;Ni的最高含量为9.783 mg/kg,含量最高值出现在附店;Cu的最高含量为48.583 mg/kg,含量最高值出现在寨河;Zn的最高含量为99.978 mg/kg,含量最高值出现在游河。

2.2 研究区土壤重金属污染评价

内梅罗综合污染指数法是人们在评价土壤重金属污染时运用最为广泛的综合指数法,可以全面反映各重金属对土壤的不同作用,突出高浓度重金属对环境质量的影响,避免由于平均作用削弱污染重金属权值现象的发生[15]。本研究采用内梅罗综合污染指数法进行重金属污染评价。以国家土壤质量二级标准[16]和土壤环境检测技术规范[13]为标准,不同地区不同重金属元素含量、重金属元素的单项污染指数、内梅罗综合污染指数以及土壤污染物分担率分别见表2、表3、表4。结果显示,不同地区稻田土壤的重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn的单项污染指数大部分小于1,从单项污染指数的角度评价,信阳市稻田重金属含量尚处于比较安全的水平,土壤质量对环境和植物基本上不会造成危害和污染。以内梅罗综合污染指数为评价等级时,东双河、十三里桥、双井、龙山内梅罗综合污染指数均高于0.7,低于1.0,说明这4个地区土壤重金属污染虽尚轻,但已达到警戒限,其他7个地区内梅罗综合污染指数均低于0.7,处于安全范围,总体上信阳市稻田土壤质量适合农业生产,并能维护人体健康。

由表2和表3可知,在信阳市13个水稻主产区土壤重金属单项污染指数除双井、龙山、附店和胡族铺Hg最高外,其他地区均为Cd最高,各地区不同重金属污染物分担率由大到小依次为Cd、Hg、Zn、Cu、As、Cr、Ni、Pb,说明Cd在不同地区的稻田土壤中污染强度最大,Hg、Zn次之。

2.3 研究区土壤重金属元素的相关性分析

重金属元素之间的相关性在一定程度上反映了这些元素污染程度的相似性或污染元素有相似的来源[17,18]。目前有不少学者用相关性来评价和研究污染元素的来源及其累积的原因,提出相应的降低或减少污染的措施与方法[17,19-21]。对不同地区国道两边稻田土壤重金属元素之间进行了相关性检验,所有变量间Pearson相关系数如表5所示。Cd与Pb、Cr呈显著正相关;Pb与Zn呈极显著正相关;Cr与Ni呈极显著正相关,As与Pb、Zn呈显著负相关。

3 讨论

钱鹏等[11]、王学锋等[12]对312国道和107国道沿线重金属元素含量进行了调查和评价,土壤中重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn均存在一定的污染。本研究中信阳市国道两边稻田土壤的质量状况尚比较好。通过内梅罗综合污染指数评价表明,龙山的内梅罗综合污染指数最高,为0.910 2,处于重金属污染警戒限,这可能是因为龙山处于交通枢纽位置,是312国道、40国道、219省道汇集区,同时有宁西铁路通过,车流量比较大,造成一定的污染。东双河、十三里桥以及双井内梅罗综合污染指数分别为0.730 4、0.754 7、0.792 0,比龙山低,但也达到重金属污染警戒限,这可能有2个原因,一是这些地区离市区比较近,车流量比较大。双井位于京九、宁西铁路汇集区和40国道、107国道、312国道汇集区;东双河有339省道、107国道和京九铁路通过。二是信阳市位于季风气候区,十三里桥位于信阳市西南部,东北季风造成这些地区大气的沉降较多[22],同时十三里桥离市区比较近,车流量和人流量都比较大。这些区域的土壤质量应引起人们的重视,采取一定的措施保护土壤环境质量。甘岸、长台、明港、吴家店、游河、五里店、附店、寨河、胡族铺的内梅罗综合污染指数均小于0.7,属于清洁无污染的地区。

Nicholson等[23]通过收集重金属在土壤中的累积和工农业重金属的排放信息,调查分析了英格兰和威尔士农田土壤中重金属的来源,发现Cd更多地来源于无机肥料。据估计,在人类活动对土壤Cd的贡献中,磷肥施用率占54%~58%[24]。本研究中,调查的信阳市13个水稻主产区有9个地区土壤中Cd的单项污染指数和污染物分担率均为最大,可能是因为土壤中重金属Cd的来源除了公路交通外,施肥也是其中一个重要来源。

4 结论

信阳市境内国道两边水稻田土壤重金属调查结果表明,水稻田土壤中重金属元素Pb、Cd、Cr、As、Hg、Ni、Cu、Zn的平均含量均未超过国家二级标准值,单项污染指数平均值均小于1,东双河、十三里桥、双井和龙山的内梅罗综合污染指数分别为0.730 4、0.754 7、0.792 0、0.910 2,为Ⅱ级污染,污染等级为“警戒限”级。甘岸、长台、明港、吴家店、游河、五里店、附店、寨河、胡族铺内梅罗综合污染指数分别为0.540 4、0.520 2、0.529 3、0.596 9、0.628 8、0.577 0、0.673 5、0.504 5、0.623 7,污染等级均为Ⅰ级,处于清洁区。结果表明车流量较高的公路交汇点两边污染指数比较高,说明交通对土壤环境质量有一定的影响。Pearson相关性检验表明,Cd与Pb、Cr之间、Pb与Zn之间、Cr与Ni之间均存在显著或极显著正相关,说明Cd、Pb、Cr、Zn、Ni可能为同源污染物;As与Pb、Zn之间呈显著负相关,说明As、Pb、Zn可能为异源污染物[17,18]。

参考文献:

[1] 李 贺,张 雪,高海鹰,等.高速公路路面雨水径流污染特征分析[J].中国环境科学,2008,28(11):1037-1041.

[2] ROMIC M, ROMIC D. Heavy metals distribution in agricultural topsoils in urban area [J]. Environment Geology,2003,43(7):795-805.

[3] OZAKI H, WATANABE I, KUNO K, et al. Investigation of the heavy metal sources in relation to automobiles [J].Water, Air and Soil Pollution,2004,157:209-223.

[4] SWAILEH K M, HUSSEIN R M, ABU-EIHAJ S, et al. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank [J]. Arch Environ Contam Toxicol,2004,47(1):23-30.

[5] IDERIAH T J K, BRAIDE S A, IZONFUO W A, et al. Heavy metal contamination of soils along roadsides in Port Harcourt metropolis, Nigeria [J]. Bull Envioron Contam Toxicol,2004,73(1):67-70.

[6] 李法云,臧树良,罗 义.污染土壤生物修复技术研究[J]. 生态学杂志,2003,22(1):35-39.

[7] 郁建桥,温 丽,王 霞,等.京沪高速公路两侧土壤重金属污染状况的研究[J].生命科学仪器,2008,6(8):58-60.

[8] 许 海,邵婉晨,李光辉,等.沪宁高速公路(常州段)两侧农田土壤重金属污染状况检测评价[J].江苏农业学报,2009,25(1):123-126.

[9] 胡晓荣,查红平.成渝高速公路旁土壤铅污染分布及评价[J].四川师范大学学报(自然科学版),2007,30(2):228-231.

[10] 甄 宏.沈大高速公路两侧土壤重金属污染分布特征研究[J].气象与环境学报,2008,24(2):6-9.

[11] 钱 鹏,郑祥民,周立旻,等.312国道沿线土壤、灰尘重金属污染现状及影响因素[J].环境化学,2010,29(6):1139-1146.

[12] 王学锋,姚远鹰. 107国道两侧土壤重金属分布及潜在生态危害研究[J]. 土壤通报,2011,42(1):174-178.

[13] 国家环保总局.HJ/T166—2004,土壤环境检测技术规范[M].北京:中国环境科学出版社,2004.

[14] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000.

[15] 郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.

[16] GB 15618—1995,土壤环境质量标准[S].

[17] 李瑞平,郝英华,李光德,等.泰安市农田土壤重金属污染特征及来源解析[J].农业环境科学学报,2011,30(10):2012-2017.

[18] 李晓雪,卢新卫,任春辉,等.宝鸡二电厂周边农田土壤重金属污染特征及评价[J].干旱地区农业研究,2012,30(2):220-224.

[19] 韩 平,王纪华,陆安祥,等.北京顺义区土壤重金属分布与环境质量评价[J]. 农业环境科学学报,2012,31(1):106-112.

[20] 王月容,卢 琦,周金星,等. 洞庭湖退田还湖区不同土地利用方式下土壤重金属分布特征[J]. 华中农业大学学报,2011, 30(6):734-739.

[21] 刘 勇,岳玲玲,李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J]. 环境科学学报, 2011,31(6):1285-1293.

[22] 包丹丹,李恋卿,潘根兴,等.苏南某冶炼厂周边农田土壤重金属分布及风险评价[J].农业环境科学学报,2011,30(8):1546-1552.

[23] NICHOLSON F A, SMITH S R, ALLOWAY B J. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. Science of the Total Environment,2003,311:205-219.

重金属污染研究现状篇4

[关键词]土壤修复 重金属污染 生态效应

中图分类号:R124 文献标识码:A 文章编号:1009-914X(2014)44-0103-02

前言

土壤环境中的重金属主要来源于矿业活动的排放,其他来源还包括污灌和污泥滥用、农药和化肥的不合理施用、农用薄膜和化石类燃料的不完全燃烧等。国务院于2011年2月18日正式批复《重金属污染综合防治“十二五”规划》因此,重金属污染土壤的修复技术研究是当前环境保护的重要课题之一。本文重点介绍国内外有关重金属污染土壤的修复技木研究进展。

1.重金属污染土壤的特点

1.1 具有隐蔽性和滞后性。土壤重金属污染不像大气污染、水污染及废弃物污染那样直观。

1.2 具有累积性。重金属污染物质在土壤中不易迁移,容易在土壤中不断积累而超标。

1.3 具有不可逆转性。在土壤中,许多有机化学物质的污染也需要较长的时间才能降解,某些重金属污染的土壤可能要100―200年时间才能够恢复。由于土壤地球物理化学的自然形成过程极其缓慢,一般每百年以0.5-2.0cm厚度的速率进行,这就意味着土壤资源一旦遭到污染或人为干扰后将很难在短时期内得以恢复。

1.4 具有难治理性。土壤重金属污染一旦发生,仅仅依靠切断污染源的方法往往很难恢复,有时要靠换土、淋洗土壤等方法才能解决问题,通常成本较高,治理周期较长。

2.重金属污染土壤的修复技术

2.1 生物修复

生物修复是指利用特定的生物吸收、转化、清除或降解环境污染物,实现环境净化、生态效应恢复的生物措施。生物修复包括植物修复、微生物修复、动物修复等。

(1)植物修复

植物萃取技术是目前研究及应用最多的植物修复技术。近年来,陈同斌等通过田间试验发现蜈蚣草具有富集As、Pb的能力。同时还具有较强的耐As,pb,Zn,Cu毒性能力,是一种修复多种重金属污染土壤(As,Pb污染为主)的优良品种。扶杂草植物中筛选出3种Cd超富集植物:龙葵、球果薄菜、三叶鬼针草。3种植物在土壤中Cd质量分数为25―50mg/kg时。地上部中Cd质量分数均能达到l00mg/kg,并且在污染区试验中也取得了较好效果。

(2)微生物修复

微生物对重金属的生物吸附与富集作用是指土壤微生物可通过带电荷的细胞表面吸附重金属离子。2007年,王瑞兴等选取到一种土壤菌,利用其在底物诱导下产生的酶化作用,分解产生CO32-矿化固结土壤中的有效态重金属(以Cd2+的处理为代表),使其沉积为稳定态的碳酸盐;对被复合重金属(Cd,Cu,Pb,Zn等)污染的土壤样进行微生物修复的实验中,有效态重金属去除率达50%~70%。杜立栋等从Pb矿区土壤中分离筛选出一株青霉菌,对人工培养基中有效Pb的最大去除率达96.54%。而且富集效果比较稳定,可应用于Pb矿区土壤生物修复。

(3)动物修复技术

动物修复在国外有较长的研究史,国内研究则处于摸索阶段。它包括将生长在污染土壤上的植物体、果实等饲喂动物,通过研究动物的生化变异来研究土壤污染状况,或者直接将土壤动物,如虹蝴、线虫饲养在污染土壤中进行有关研究。同时,在重金属污染的土壤中放养蚯蚓,待其富集重金属后,采用电激、清水等方法驱出蚯蚓,集中处理,对重金属污染土壤也是一种经济有效的土壤生态恢复措施。

2.2 物理修复

(1)置换法

置换法主要分为客土法、换土法,可以降低土壤中重金属的含量,减少重金属对土壤一植物系统产生的毒害,从而使农产品达到食品卫生标准。客土法和换土法则是用于重污染区的常见方法,在这方面日本取得了成功的经验。

(2)玻璃化技术

玻璃化技术是指把重金属污染区土壤置于高温高压下,使之形成玻璃态物质,将重金属固定其中,从而达到从根本上消除土壤重金属污染的目的。该技术方法工程量大,费用偏高,其最大的特点是见效快,适用于对受到重金属污染严重的土壤进行抢救性修复工作。

2.3 化学修复

化学钝化多用于原位土壤修复,是修复重金属污染土壤的重要途径之一,通过施人一些钝化剂以降低土壤中重金属有效态含量,从而减少迁移及对农作物的毒害。

(1)化学钝化技术

A.无机改良剂的应用

近年来,石灰石、天然沸石、赤泥、骨粉、钙镁磷肥等作为改电剂修复重金属污染土壤的研究逐步成熟。其中石灰作为重金属污染土壤化学固定的常用物质,其对重金属的固定主要通过提高土壤pH值,使重金属生成氧化物或以碳酸盐的形态沉淀起作用,明显降低土壤重金属的有效态含量;天然沸石作为一种优良的铅污染土壤修复材料,通过调节土壤pH值和阳离子交换量抑制重金属铅的生物活性;赤泥可通过提高土壤pH影响重金属的赋存形态,降低重金属的有效性;骨粉可有效降低酸性重金属污染土壤的酸度,提高pH,增强土壤的吸刚性能,促使+壤重金属有效态含量和生物可给性降低;钙镁磷肥是酸性土壤中常用的修复材料,可降低土壤交换态镉含量,使其向缓效态转化。

B.有机改良剂的应用

对于矿区酸性重金属污染土壤具有养分流失严重和有机质缺失的特点,合理施用有机肥可提高土壤养分,增加土壤团粒结构,改善土壤理化性质。有机物料有助予恢复土壤微生态环堍系统,降低土壤中有毒重金属的生物可给性,从而减少对作物的毒害。常见的有机固化物包括禽畜粪便、无害化后的作物秸秆、豆科绿肥和污泥等。

C.螯合技术

螯合剂对土壤中重金属的活化作用主要是通过螯合剂与土壤溶液中的重金属离子结合,降低土壤液相中的金属离子浓度,促进重金属在植物地上部的积累:并且对重金属Pb、cu、zn、cd、Ni等有很强的活化能力。

3.技术路线概述

3.1 土壤污染特征调查

通过开展土壤重金属污染调查与评价,掌握修复区详细的污染状况,为下阶段土壤修复提供依据,土壤特征调查可分现有资料收集和修复区污染状况前期调查两个步骤进行。

3.2 修复区污染状况调查主要内容

(1)样点布设。根据前期收集的资料,由于前期采样调查取样点较少,针对这种状况,根据综合污染型土壤监测单元布点要求,采取网格布点的方法,对土壤污染进行全面的评价。

(2)现场勘查校正。通过现有资料确定的调查区域内理论监测点位,还要通过必要的现场勘查,最终对理论布点数目和位置进行检验和优化。现场环境条件不具备采样条件需要调整点位的,现场点位调整后要对地图网格所布点进行调整,最终形成调查区域内实际需要实施监测的点位集。

(3)采样检测。采样采表层样及深层样,网格布点样品采样深度为20 cm,深层取样分五层取样:0~20 cm;20~40 cm;40~60 cm,土壤样品采集1 kg左右,装入样品袋,如潮湿样品可内衬塑料袋(供无机化合物测定)。采样的同时,由专人填写样品标签、采样记录;标签一式两份,一份放入袋中,一份系在袋口,标签上标注采样时间、地点、样品编号、监测项目、采样深度和经纬度。采样结束,需将底土和表土按原层回填到采样坑中,方可离开现场,并在采样示意图上标出采样地点,避免下次在相同处采集剖面样。

(4)污染评价。土壤重金属评价采用内梅罗指数法。根据国家环保总局颁布的《土壤环境监测技术规范》(HJ/T 166-2004)规定,土壤环境质量评价标准常采用国家土壤环境质量标准、区域土壤背景值或部门(专业)土壤质量标准。

(5)绘制修复场地污染物分布图。根据样品测试结果,结合我国的《土壤环境质量标准(GB15618-1995)》和《危险废物鉴别标准―毒性物质含量鉴别(GB5085.6-2007)》,对典型污染场地的污染现状、污染程度及范围以及污染迁移转化的趋势及规律等进行剖析,根据潜在重点污染区域的检测结果,得到重金属浓度在不同位置变异,进一步确定修复区污染特征,明确污染浓度及范围。

(6)修复方案设计。根据修复区修复的土地利用功能,确定了药剂比例及土壤调理剂的配比及过程的控制条件。得到后期大规模修复所需要的运行参数,进而做出具体的详细的修复方案。具体修复方案如下:

A、修复区不同污染程度划分方案:确定修复区域位置,可根据污染情况将修复区根据污染程度,划定高、中、低浓度区,根据污染程度的不同,做不同的设计。

B、土壤污染治理实施方案:确定药剂配方、加药比、选择最合适的原位稳定剂施加方式和控制条件。

C、修复后农作物恢复种植方案:为了探究稳定化修复对农产品安全的保护情况,预计选择2种当地常见作物在修复区种植。

D、修复验收方案:目前稳定化修复还没有成熟的验收体系,本项目选用土壤浸出为验收方法,但最终标准需根据场地调查情况及小试情况做调整。

4.结论

通过对国内外重金属污染土壤的修复技术研究的综述,可以看出重金属污染土壤的修复技术将越来越受到人们的关注,进一步探索和研究其在重金属去除方面的应用,具有十分重要的意义。结合当前的研究发现重金属污染土壤的修复还可以从以下几个方面努力:

4.1做好修复试点,逐步解决土壤重金属污染问题。开展重金属污染土壤修复技术示范,在重金属污染防治的重点区域进行污染评估,因地制宣地采用生物、物理、化学等措施开展重金属污染土壤治理。

4.2以生态文明为指导,探求实现重金属污染土壤修复治理与景观美化、生态建设与经济效益有机结合的治理模式。

4.3注重重金属污染防治管理、制度、措施及方法创新,逐步建立企业环境信息披露制度和重金属污染物产生、排放详细档案。

参考文献

[1] 梁彦秋,潘伟,刘婷婷,邢志强,臧树良,沈阳污灌区土壤重金属元素形态分析[J].环境科学与管理;2006年02期.

[2] 王瑞兴,钱春香,吴淼,成亮.微生物矿化固结土壤中重金属研究[J];功能材料;2007年09期.

[3] 郝晓伟,黄益宗,崔岩山,胡莹,刘云霞.赤泥和骨炭对污染土壤As化学形态及其生物可给性的影响[J].环境化学;2010年03期.

作者简介

重金属污染研究现状篇5

关键词:太湖;重金属污染;地积累指数

中图分类号:X703 文献标识码:A

文章编号:1674-9944(2013)01-0035-03

1 引言

水体沉积物作为水环境中重金属的主要蓄积库[1],可以反应水体受重金属污染的状况。通过各种途径进入水环境的重金属绝大部分能迅速地转移至沉积物与悬浮物中,而悬浮物在被水流搬运的过程中,当其负荷量超过搬运能力时,也逐渐变为沉积物。因此,无论是在未受污染或受污染严重的水体中,沉积物中重金属含量比水中重金属的含量要高许多倍。而累积在沉积物中的重金属除了直接危害生物和通过食物链影响人类健康外,在环境条件的改变下(如遇到灾害性的天气和风浪条件),有可能再次释放出来,导致水体环境质量恶化。由于沉积物中重金属对环境的危害作用,研究者已开始重视沉积物中重金属污染的研究。沉积物环境的重金属主要是指生物毒性显著的汞、锡以及类金属砷,其次是指毒性一般的重金属锌、铜、镍、钻、锡等,当前最引起人类关注的是砷、汞、铬、锡、铅等。本文通过对“十五期间”太湖无锡水域的底泥数据统计,选用地积累指数法对沉积物的重金属污染程度进行了评价。

2 太湖无锡水域底质

2.1 太湖概况

太湖位于江苏省南部,长江三角洲中部;全部水域在江苏省境内,湖水南部与浙江省湖州市相连。它是中国东部近海区域最大的湖泊,也是中国第二大淡水湖,是中国著名的风景名胜区。太湖地处平原地区,是一个浅水湖,太湖水位较稳定,平均水深1.94m,至深处2.6m。

2.2 重金属来源

目前,太湖除氮、磷等元素偏高对水体产生富营养化,造成夏季蓝藻爆发外,水质尚好,但重金属污染仍不容忽视。笔者初步分析,太湖流域无锡水域的重金属污染可能来自以下几个方面包括:电镀行业产生的含重金属酸性废水;城市工业排污;水土流失过程造成的重金属污染等。

2.3 评价范围

太湖无锡水域底质监测是在枯水期与太湖水质监测同步进行,监测点点位与太湖水质监测点位相同。监测项目为砷、汞、铅、铬、镉、铜、锌、硫化物及有机质。同时为了便于太湖底质环境质量评价,将太湖无锡水域分为四个区:五里湖区、梅梁湖区、贡湖无锡水域和宜兴沿岸区,点位图见图1。

2.4 评价方式

地积累指数(Igeo)是德国海德堡大学沉积物研究所的科学家Muller提出的一种研究水环境沉积物中重金属污染的定量指标。由于其不仅考虑到人为污染因素、环境地球化学背景值等,特别是注意到自然造岩作用可能引起背景值变动的因素(常数),一时在欧洲被广泛采用。计算公式见公式(1):

(1)

式中:C是指元素n在沉积物中的含量(指质量比,实测值),mg/kg;B是指沉积岩(普通页岩)中该元素的地球化学背景值,mg/kg(表1);k为修正系数(一般取值为1.5),考虑成岩作用可能会引起背景值的变动。

根据地积累指数(Igeo)的大小将污染等级分为7级,即0~6级,表示污染程度由无污染至极强污染,地积累指数(Igeo)与重金属污染程度的关系见表1。

3 重金属污染评价

(1)太湖地区重金属地球化学背景值见表2[2]。

(2)2005年太湖无锡水域重金属地积累指数及污染分级见表3。

五里湖:底质中砷、铜、锌含量处于无-中污染状态,汞、铬和铅处于清洁状态。

梅梁湖:底质中锌含量处于无-中污染状态,其余指标均处于清洁状态。

贡湖无锡水域:指标均处于清洁状态,这与无锡市将贡湖作为水源地相对应,确实贡湖无论是水质还是底质都是处于污染较轻的状态。

宜兴沿岸区:底质中砷、铜和锌含量处于无-中污染状态,汞、铅和铬处于清洁状态;

从整个太湖无锡水域看:从平均值来说,无锡水域的底泥重金属都处于无污染状态下。但是环境保护仍不容忽视,一旦出现污染,治理将是非常困难的。

(3)“十五”期间太湖无锡水域底质重金属变化分析。从整个“十五”期间太湖无锡水域底质含量的变化趋势看,铅和铜含量处于轻污染状态,并有逐年上升趋势;汞和铬处于清洁状态,并有逐年下降趋势;底质中砷的含量逐年降低,已由2001年的轻污染下降为清洁,见图2。

参考文献:

[1] 弓晓峰.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732~736.

重金属污染研究现状篇6

关键词:水体;重金属污染;毒理作用;人体健康

作者简介:于晓莉(1973―),女,河南郑州人,工程师,主要从事环境监测工作。

中图分类号:X701

文献标识码:A

文章编号:16749944(2011)10012304

1 引言

水体是人类赖以生存的主要自然资源之一,又是人类生态环境的重要组成部分,也是地球物质生物化学循环的储库。由于人类活动的影响,进入水体环境中的污染物越来越多,这些污染物给环境和人体健康造成了许多问题。多年来人们非常关注水体富营养化问题,因为其宏观破坏性能引起人们的注意,而水体重金属污染问题人们重视程度相对不够,近年研究证明甲基汞是水俣病致病因,镉是骨痛病致病因。同时随着采矿、冶炼、化工、电镀、电子、制革等行业的发展,以及民用固体废弃物不合理填埋和堆放,重金属污染物事故性排放以及大量化肥、农药的施用,使得各种重金属污染物进入水体。重金属污染物难以治理,它们在水体中具有相当高的稳定性和难降解性,在水体中积累到一定的限度就会对水体、水生植物及水生动物系统产生严重危害,并可通过食物链而在水产品体内累积,最终作为食品进入人体,影响人的健康,因此水体重金属污染日益成为人们关注的焦点。

2 重金属污染的来源和毒理作用

对人体健康构成危害的重金属绝大多数来自于工矿企业所排放的废水,采矿、冶金、化工、电镀等多种工业行业的生产废水都含有重金属,排放到水体引起水质的污染,进入水体的重金属还会发生一系列的物理化学反应,诸如氧化、还原、沉淀与溶解、吸附与解析、络合作用以及生物甲基化等,这主要取决于重金属的性质和水体的理化指标。还有一部分就是城市道路上的机动车尾气污染,对人体健康构成典型危害的是铅污染。

进入大气、水体和土壤的重金属均可以通过呼吸道、消化道、皮肤3种途径侵入人体,进入体内的重金属借助体内某些有机成分可结合成金属络合物或金属螯合物,对人体的各个发育阶段都会产生影响,尤其对母婴的毒害更为明显。机体内可以同重金属发生反应的物质不少,如蛋白质(氨基酸)、核酸等;儿茶酚胺、维生素、激素等微量活性物质和含氧脂肪酸、磷酸等也能与重金属发生作用,使上述物质丧失或改变了原来的生化功能而引起病变。

许多重金属离子可因微生物甲基化作用而生成相应的甲基化合物,此类化合物多属毒性很强的挥发性物质,极易通过呼吸道进入人体,其中具有重要病理学意义的,当首推甲基汞化合物。另有一些重金属离子通过口腔、皮肤进入体内后,与人体某些酶的活性中心巯基(-SH)有着特别强的亲和力,金属离子极易取代巯基上的氢,从而使酶丧失其生物活性,即重金属的致害作用就在于使生物酶失去活性。还有一些重金属离子可以通过与酶的非活性部位相结合,从而改变活性部位的构象,或与起辅酶作用的金属离子置换,同样能使生物酶的活性减弱甚至丧失。

2.1 汞污染的来源和毒理作用

2.1.1 汞污染的来源

汞是金属中毒性较高的元素之一。以汞为原料的工业生产过程中产生的含汞废水、废气和废渣对环境的汞污染非常严重,此外煤及石油燃烧释放出来的汞,含汞农药的广泛运用造成对大气和土壤的污染。目前由于人类活动向大气、水体和士壤中排放的总汞量,每年已超过2万t。

2.1.2 汞的毒理作用

(1)金属汞。金属汞常以蒸气态污染大气,可通过呼吸道进入人体。职业性长期吸入汞蒸气可引起慢性汞中毒,其主要表现出体力减退、头晕、头痛、失眠、多梦、记忆力减退等中枢神经系统症状。

(2)无机汞化合物。在短期内摄人大量无机汞盐或误食含汞物质,可引起急性汞中毒。

(3)有机汞化合物。有机汞化合物分为苯基汞和烷氧基汞。甲基汞属于高神经毒物质。主要侵犯中枢神经系统,其慢性中毒症状出现顺序一般为感觉障碍、运动失调、语言障碍、视野缩小、听力障碍。

2.2 铅污染的来源和毒理作用

2.2.1 铅污染的来源

铅污染来源广泛,主要来自汽车废气和冶炼、制造以及使用铅制品的工矿企业。1969年日本东京因汽车尾气污染空气引起居民慢性铅中毒,该事件发生后世界各国都十分重视环境铅污染对人体健康的危害,明令禁止或限制在汽油中加入四乙基铅。

2.2.2 铅的毒理作用

(1)急性中毒。意外摄入大量铅时可发生急性中毒。如含铅餐具将大量铅溶出进人食物时,食入后可引起中毒。幼儿啃嚼含铅油漆的玩具和家具等也可产生中毒。服用过量的含铅药物同样可引起中毒。

(2)慢性中毒。对于血液系统,铅能抑制血液中氨基乙酚丙酸脱氢酶和血红素合成酶,血红素合成受到抑制而出现贫血,面色苍白(所谓“铅容”)。对于神经系统,铅中毒对中枢神经系统的作用是引起铅中毒性脑病。慢性铅中毒时周围神经也出现病症,最严重的典型症状是由挠神经损害引起的百对称性腕下垂。此外是伸肌无力。多数中度和重度铅中毒病例常见到四肢无力、两手握力减退,少数可见局部性皮肤触觉和痛觉减退等。对于消化系统其典型症状是腹绞痛。

(3)生殖毒性与致畸作用。铅中毒工人外周血淋巴细胞染色单体畸变率增加。流行病学调查表明,铅对苯并芘诱发工人肺癌可能有协同作用。环境铅污染引起铅中毒症状:慢性中毒多在局部地区发生。其中毒症状主要有神经衰弱症候群、中毒性多发性神经炎、中毒性脑病、间质性肾炎或肾萎缩以及心肌损伤等。

2.3 镉污染的来源和毒理作用

2.3.1 镉污染的来源

环境中镉污染的最主要来源是有色金属矿产开发和冶炼排出废气、废水和废渣。煤和石油燃烧排出的烟气。含镉肥料的施用也是造成镉污染的原因之一。此外,在电镀、制造合金、焊料、颜料、电池、雷达、电视机荧光屏、半导体元件、照相材料、化肥、杀虫剂、塑料、枪械弹药等生产中用做原料或催化剂,其在生产过程中可向环境排放出含镉废物。餐饮具和食品包装也存在镉污染。如在上釉的陶器中储存食品,尤其酸性液体食品,可引起明显的镉污染。

2.3.2 镉的毒理作用

日本神通川流域发生的骨痛病是由于神通川上游锌矿冶炼排出的含镉废水污染了神通川,河水灌溉使镉进人稻田而被水稻吸收。镉引起骨痛病的原因可能是由镉对肾功能的损害使肾中维生素D的合成受到抑制,影响人体对钙的吸收和成骨作用。同时,镉使骨胶原链上的羟脯氨酸不能氧化产生醛基,妨碍骨胶原的固化与成熟,从而导致骨骼软化。镉对胃肠粘膜有刺激作用,故口服镉化物可引起呕吐、腹泻、休克和肾功能障碍,人在生产活动中吸人大量的镉烟尘和蒸气也可引起急性中毒。

2.4 铬污染的来源和毒理作用

2.4.1 铬污染的来源

电镀、皮革、制药、研磨剂、防腐剂、颜料以及合成催化等方面铬有广泛的用途,生产中均可产生含铬三废。在生产中含铬废渣的堆放也是一个重要污染来源,含铬废渣任意堆放,雨水冲淋,大量铬溶渗和流失,污染环境。

2.4.2 铬的毒理作用

(1)急性毒性。铬对局部有刺激、腐蚀作用,也可导致呼吸障碍。铬对皮肤的急性毒性表现为铬对皮肤的刺激和腐蚀作用所引起的急性皮肤糜烂及变态反应皮肤炎。

(2)亚急性慢性毒性。铬对人的慢性毒性作用,铬经呼吸道侵入,可引起鼻炎、咽炎、支气管炎等。皮肤长期接触铬化合物可引起接触性皮炎或湿疹,多见于手背、腕、前臂等部位的红斑、丘疹。对铬过敏者,也见于非接触部位。铬还可引起皮肤溃疡,又称“铬疮”。溃疡可深达骨骼,愈合缓慢,愈合后可形成瘸痕或色素沉着。铬酸雾还对眼结膜有刺激作用;可引起流泪;可刺激口腔、咽喉,可引起咽后壁干燥以致出现淡黄色小溃疡等。长期接触铬盐粉尘或铬酸雾,除损害皮肤外,还产生全身性影响。

(3)致癌变、致畸变、致突变作用。六价铬和三价铬均有致癌作用。目前世界公认某些铬化合物可致肺癌,称为铬癌。

2.5 砷污染的来源和毒理作用

2.5.1 砷污染的来源

采矿、金属冶炼、煤炭燃烧、含砷工业品(如陶瓷、制革、玻璃等)和含砷农药的各种砷化合物以粉尘、烟尘、废气和废水等形式污染环境。

2.5.2 砷的毒理作用

(1)急性中毒。急性砷中毒较常见,如误食砷污染的食品、误饮砷污染的饮料或误服含砷农药等。

(2)慢性中毒。长期持续摄入低剂量的砷化合物,尤其是吸入砷化合物粉尘者,经过数月乃至数年、十几年的砷蓄积而发生疾病,砷慢性中毒的某些症状是其特有的,但大部分症状是非特异性的,所以慢性砷中毒常常被忽略。在一定意义上,尿、头发、指甲中的砷含量可指示砷中毒和体内砷含量。

3 水体重金属污染研究现状

3.1 水体中重金属存在形态及毒性研究

水体中不同形态的重金属污染物对水体环境的危害程度有很大的差异,开展水体中重金属存在形态的研究,对于有效防治和治理水体重金属污染物具有非常重要的意义。目前人们已经对许多不同形态重金属污染物的毒性做了大量研究,获得了大量实验结果。例如人们经过研究发现水体中重金属污染物Cr6+对水生动植物的毒性要远远大于Cr3+的毒性。Wageman和Barica在研究Cu对藻类的毒性时发现:Cu 的毒性主要由Cu2+、[CuOH+]和Cu(OH)2引起[1]。刘清等[2]从离子形态角度出发,同时考虑游离和羟基络合态的毒性,以及它们之间的毒性差异,通过数学方法拟合定义出活性态铜离子浓度,较好地反映了水体中铜的毒性。另外人们已经研究发现有机汞(如甲基汞)等物质有非常大的危害性。例如1953~1961年期间影响日本南部水俣湾周围渔民的神经性疾病――水俣病就是由水体中的甲基汞引发的。

3.2 水体重金属污染物的生物学效应研究

重金属对水体微生物和植物的生物学效应研究很早就已经广泛展开,Kaplan等[3]研究表明,当重金属Cu进入细胞体内后,会发生诸如氧化、引入甲醛等变化,这些变化都会破坏叶绿体等胞内器官,直接影响藻类细胞的光合、呼吸作用和酶的活性,并抑制藻类的生长。阎海等[4]通过实验证明,Zn、Cu和Mn能抑制月形藻的生长,3者的毒性大小顺序为Zn>Cu>Mn。谷巍等[5]发现,在相同处理条件下,Hg2+的毒性要比Cd2+强,Hg2+对轮叶狐尾藻的致死浓度为1~2 mg/L,Cd2+的致死浓度为3~5mg/L。戴家银[6]研究指出,重金属Cu和Zn对真绸幼鱼组织酶活性产生影响。Weir和Hine[7]报导了在含0.003g/L汞的水中,即可以检测到汞对金鱼的毒性效应。Skerfivin等[8]研究发现,凡是以含甲基汞的鱼为食的人们,他们的染色体断裂与汞在人体内的含量具明显相关性。水体中重金属浓度增加以后,将对鱼类和水生浮游生物产生严重影响。Mcintosh和Kevern[9]研究发现,当水体中的重金属铜的浓度达到3g/L 时,水体中的枝角目虫和轮虫的数量就开始减少。Maxfield

重金属污染研究现状范文

重金属污染研究现状篇1关键词:中药;重金属;评价方法;述评DOI:10.3969/j.issn.1005-5304.2016.02.040中图分类号:R282
点击下载文档
确认删除?
VIP会员服务
限时5折优惠
回到顶部