有机高分子材料的应用范文

栏目:文库百科作者:文库宝发布:2023-12-18 17:27:43浏览:579

有机高分子材料的应用

有机高分子材料的应用篇1

关键词:高分子材料;导电机理;导电塑料;用途

文章编号: 1005–6629(2012)5–0071–04 中图分类号: G633.8 文献标识码: B

20世纪70年代,白川英树、Heeger和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。导电高分子材料的发现,改变了人们对传统塑料、橡胶等高分子材料是电、热的不良导体的观念,经过40多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为金属材料和无机导电材料的优良替代品。而今这种导电高分子材料已广泛应用于电子工业、航空航天工业之中,并对新型生物材料和新能源材料的开发产生巨大的影响。

1 高分子材料的分类及导电机理

导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6 S/cm以上的聚合物材料。这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105 S/cm)的范围里变化。这种特性是目前其他材料所无法比拟的。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。

1.1 结构型导电高分子材料

结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料,一般是由电子高度离域的共轭聚合物经过适当电子受体或供体进行掺杂后制得的。结构型导电高分子材料具有易成型、质量轻、结构易变和半导体特性。最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。这种掺杂后的聚乙炔的电导率高达105 S/cm。后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。

1.1.1 聚乙炔

纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5等)后才能导电。与半导体不同的是,掺杂聚乙炔导电载流子是孤子。

聚乙炔中孤子是怎样形成的呢?反式聚乙炔结构有两种形式,互为镜像,如图1所示:

A相和B相能量相等,都是基态。如果原来整个反式聚乙炔处于A相,通过激发可以变为B相,中间出现的过渡区域,称为正畴壁,反之称为反畴壁。正畴壁称为孤子,反畴壁称为反孤子[1]。激发过程中所提供的能量只分布在正、反畴壁中,畴壁以外的部分能量不变。孤子态是由导带和价带各提供1/2个能级构成的,因此电荷Q=0,当用施主或受主杂质进行掺杂形成荷电孤子后,Q=±e。反式聚乙炔掺杂后,施主杂质向碳链提供电子,被激发形成的孤子带有负电,如果是受主杂质,将从碳链中吸取电子,使孤子带有正电。这样孤子就成为反式聚乙炔中的导电载流子。

聚乙炔是目前世界上室温下电导率最高的一种非金属材料,它比金属质量轻、延展性好,可用作太阳能电池、电磁开关、抗静电油漆、轻质电线、纽扣电池和高级电子器件等。

1.1.2 聚对苯撑

聚对苯撑(PPP)有如图2 所示两种结构形式:

其中(a)式稳定,而(b)不稳定,很难单独存在,当FeCl3与PPP掺杂时发生电荷转移使PPP分子链成为正离子,而FeCl3以FeCl4-负离子的形式加到分子链上,同时FeCl3被还原成FeCl2[2],即:

2FeCl3+eFeCl4-+FeCl2

因此,掺杂过程实际上是一个氧化还原过程或电荷转移过程。如果掺杂剂为受体分子,电荷转移使高分子链成为正离子,掺杂剂为负离子,如果掺杂剂为给体时,则相反。聚对苯撑(PPP)的导电性和热稳定性优良,有多种合成方法,常温下为粉末,难以加工成型。电化学聚合可得到薄膜状产品,但电化学聚合的产物聚合度小、电气特性和机械性能低,可采用可溶性预聚体转换工艺提高其聚合度。

1.1.3 聚噻吩

噻吩的分子结构如图3所示,环上有两类C原子,因此在发生聚合反应时会有3种连接结构,其中α-α连接时,噻吩环之间的扭转角度最低,当其与一些复合材料发生掺杂时会通过π-π键共轭作用结合在一起,形成一个个相对独立的导电单元,这些导电单元相对纯的聚噻吩而言,具有更高的电导率[3]。

1.1.4 聚吡咯

聚吡咯(PPy)是少数稳定的导电高聚物之一,但纯PPy只有经过合适掺杂剂掺杂后才能表现出较好的导电性。聚吡咯常用的掺杂剂有金属盐类如FeCl3,卤素I2、Br2,质子酸如H2SO4等。不同种类的掺杂剂对PPy掺杂及形成高导电性的机理不同,但大部分具有氧化性的掺杂剂,其掺杂过程可以用电荷转移机理来解释。按此机理掺杂时,聚合物链给出电子,掺杂剂被还原成掺杂剂离子,然后此离子与聚合物链形成复合物以保持电中性。以FeCl3为氧化剂制备聚吡咯,通过电荷转移形成复合物,反应按下式进行[4]:

1.1.5 聚苯胺

与其他导电高聚物一样,聚苯胺(PAN)是共轭高分子,在高分子主链上交替重复单双链结构,具有的价电子云分布在分子内,相互作用形成能带等。其化学结构如图4 所示。

聚苯胺可以看作是苯二胺与醌二亚胺的共聚物,x的值用于表征聚苯胺的氧化还原程度,不同的x值对应于不同的结构、组分及电导率。完全还原型(x=1)和完全氧化型(x=0)都为绝缘体,在0<x<1的任一状态都能通过质子酸掺杂进行交换,当x=0.5时,电导率最大,且可通过聚合时氧化剂种类、浓度等条件控制x的大小。对其进行电化学或化学掺杂,使离子嵌入聚合物,以中和主链上的电荷,从而可使聚苯胺迅速并可逆地从绝缘态变成导电状态,当质子酸进行掺杂时,质子化优先发生在分子链的亚胺氮原子上。质子酸发生离解后,生成的(H+)转移至聚苯胺分子链上,使分子链中的亚胺上的氮原子发生质子化反应,生成元激发态极化子[5]。

聚苯胺(PAN)的研究后来居上,它与热塑性塑料掺混具有良好的导电性,与其他导电高聚物相比,具有良好的环境稳定性,易制成柔软、坚韧的膜,且价廉易得等优点。在日用商品及高科技方面有着广泛的应用前景。

1.2 复合型导电高分子材料

复合型导电高分子材料是以高分子聚合物作基体,加入相当数量的导电物质组合而成的,兼有高分子材料的加工性和金属导电性。既具有导电填料的导电性、导热性以及电磁屏蔽性,又具有基体高聚物的热塑性、柔韧性以及成型性,因而具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等很多优良的特点,已被广泛应用于电子工业、信息产业以及其他各种工程应用中。复合型导电塑料是经物理改性后具有导电性的塑料,一般是将导电性物质如碳黑、金属粉末、金属粒子、金属丝和碳纤维等掺混于树脂中制成。在技术上比结构型导电塑料成熟,不少品种已商业化生产。

目前,关于复合型导电高分子材料的导电机理有宏观渗流理论,即导电通路学说、微观量子力学隧道效应理论和微观量子力学场致发射效应等三种理论[6]。

(1)渗流理论:这一理论认为,当复合体系中导电填料用量增加到某一临界用量时,体系电阻率急剧下降,体系电阻率-导电填料用量曲线出现一个狭小的突变区域,在此区域内导电填料的任何微小变化都会导致电阻率显著变化,这种现象称为渗滤现象,导电填料的临界用量通常称为渗滤阈值。

(2)隧道效应理论:该理论认为复合体系在导电填料用量较低时,导电粒子间距较大,混合物微观结构中尚未形成导电网络通道,此时仍不具有导电现象。这是因为此时高分子材料的导电性是由热振动电子在导电粒子之间的迁移造成的。隧道效应现象几乎仅仅发生在距离很接近的导电粒子之间,间隙过大的导电粒子之间没有电流传导行为。

(3)场致发射效应理论:该理论认为,当复合体系中导电填料用量较低,导电粒子间距较大、导电粒子内部电场很强时,电子将有很大几率飞跃树脂界面势垒跃迁到相邻电子离子上,产生场致发射电流,形成导电网络。

1.2.1 炭黑添加型导电高分子材料

炭黑不仅价格低廉、导电性能持久稳定,而且可以大幅度调整复合材料的体积电阻率。因此,由炭黑填充制成的复合导电高分子材料是目前用途最广、用量最大的一种导电材料。复合材料导电性与填充炭黑的填充量、种类、粒度、结构及空隙率有关,一般来说粒度越小,孔隙越多,结构度越高,导电性就越强。

1.2.2 金属添加型导电聚合物

这类导电塑料具有优良的导电性,比传统的金属材料重量轻、易成型、生产效率高、成本低,进入20世纪80年代后,在电子计算机外壳、罩、承插件、传输带等方面得到应用,成为最年轻、最有发展前途的新型导电和电磁屏蔽材料。常见的金属类导电填充剂有金、银、铜、镍等细粉末。

2 导电高分子材料的广泛应用

2.1 在电子元器件开发中的应用

2.1.1 用于防静电和电磁屏蔽方面

导电高聚物最先应用是从防静电开始的。将特定比例的十二烷基苯磺酸和对甲苯磺酸混合酸掺杂的PANI与聚(丙烯腈-丁二烯-苯乙烯)树脂(ABS)共混挤出,制备了杂多酸掺杂PANI/ABS复合材料,通过现场聚合的方法在透明聚酯表面聚合了一层导电PANI,表面电阻可控制在106~109 Ω[7]。通过对复合材料EMI屏蔽的研究,发现在101 GHz下,复合材料的屏蔽效能随其中PANI含量的增大而增大。掺杂能提高PANI的屏蔽效能。

2.1.2 导电高分子材料在芯片开发上的运用

在各种带有微芯片的卡片以及条码读取设备上,高分子聚合物逐渐取代硅材料。塑料芯片的价格仅为硅芯片的1 %~10 %,并且由于其具有可溶性的特性而更易于加工处理[8]。目前国际上已经研制出集成了几百个电子元器件的塑料芯片,采用这种导电塑料制造的新款芯片可以大大缩小计算机的体积,提高计算机的运算速度。

2.1.3 显示材料中的导电高分子材料

有机发光二极管是由一层或多层半导体有机膜,加上两头电极封装而成。在发光二极管的两端加上3伏~5伏电压,负极上的电子向有机膜移动,相反,与有机膜相连的正极上的电子向负极移动,这样产生了相反运动方向的正负电荷载体,两对电荷载体相遇,形成了“电子-空穴对”,并以发光的形式将能量释放[9]。由于它发光强度高、色彩亮丽,光线角几乎达到180度,可用于制造新一代的薄壁显示器,应用在手机、掌上电脑等低压电器上,也应用于金融信息显示上,使图像生动形象,并可图文通显。利用电致变色机理,还可用于制造电致变色显示器、自动调光窗玻璃等。

2.2 在塑料薄膜太阳能电池开发中的应用

传统的硅太阳能电池不仅价格昂贵,而且生产过程中消耗大量能源,因此成本昂贵,无法成为替代矿物燃料的能源,而塑料薄膜电池最大的特点就是生产成本低、耗能少。一旦技术成熟,可以在流水线上批量生产,使用范围也很广。制造塑料薄膜太阳能电池需要具有半导体性能的塑料。奥地利科学家用聚苯乙烯和碳掺杂形成富勒式结构的材料,再将它们加工成极薄的膜,然后在膜层上下两面蒸发涂上铟锡氧化物或铝作为电极。由于聚苯乙烯受到光照时会释放出电子,而富勒式结构则会吸收电子,如果将灯泡接在这两个电极上,电子开始流动就会使灯泡发光[10]。

2.3 在生物材料开发中的应用

在生命科学领域,导电高分子材料可制成智能材料,用于医疗和机器人制造方面。由于导电有机聚合物在微电流刺激下可以收缩或扩张,因而具备将电能转化为机械能的潜力,这类导电聚合物组成的装置在较小电流刺激下同样表现出明显的弯曲或伸张/收缩能力。为了把聚合物变成伸屈的手指活动,加上了含PPY的三层复合膜[PPY/缘塑料膜/PPY],其中一层PPY供给正电荷,另一层PPY供给负电荷。机器人手指工作:提供正电荷的一侧凹陷进去,即体积收缩;提供负电荷的一侧就鼓胀起来,体积膨胀,引起手指弯曲[11]。用改进的PAN和碳纤维合并起来作为纤维束驱动器,用它制造手指关节链(见图5)其中关节的动作是借助于激光发动和纤维反抗成对的推拉控制,是由改变pH来激发动作的,并有激发纤维和反抗纤维的数量来控制位置[12]。

最新研究表明,DNA也可以具有导电性,因此,把导电塑料与生命科学结合起来,可以制造出人造肌肉和人造神经,以促进DNA的生长或修饰DNA,这将是导电塑料在应用上最重要的一个趋势。

2.4 在新型航空材料开发中的应用

航空制造所用复合材料是一种聚合体树脂制成的矩阵结构,由耐热性能良好的增强型碳素纤维层或者玻璃纤维层胶合而成,再利用熔炉打造成所需要的形状,以适应不同零件所承受的压力。另外,像聚苯胺、聚吡咯可用于电磁屏蔽,涂有其聚合纤维的飞机,能吸收雷达信号,使飞机隐身,还可排除雷击的危险。在导弹外面裹上一层这类聚合物,不仅可防止产生静电,还可减轻导弹的重量[13]。

3 导电高分子材料的研究进展

20世纪70年代以来,电子、电气、通讯产业的迅速崛起,推动了导电材料的快速发展。随着导电材料使用环境的变化,对导电材料的发展也提出了新的要求。总体来说,导电高分子材料的发展主要围绕以下几个方面:

(1)开展分子水平上的研究和应用,开发新品种导电材料,尤其是高导电性导电聚合物、高强度导电高分子材料、可溶性导电高分子材料和分子导电材料,以便能够制成“分子导线”、“分子电路”和“分子器件”。

(2)研究设计和合成结构高度稳定的、具有高荧光量子效率和高电荷载流子迁移率的共轭聚合物,制备出结构有序的导电聚合物薄膜材料[14]。

(3)导电材料多功能化。除具有导电性能外,还应具有优良的阻燃性、阻隔性、耐高温、耐腐蚀、耐摩擦等性能,并在加大导电填料用量以提高导电性能的前提下,如何保持或增强复合材料的成型加工性能、力学性能和其他性能。

导电高分子材料的这些发展趋向预示着一个新的塑料电子学时代即将到来。

参考文献:

[1]包咏.聚乙炔导电性介绍[J].大学化学,2003,18(5).

[2]韦玮,张晓辉.聚对苯撑掺杂和导电性能研究[J].功能高分子学报,1998,(6).

[3]王红敏,梁旦.聚噻吩/多壁碳纳米管复合材料结构与导电理论的研究[J].化学学报,2008,(20).

[4]周媛媛,李松等.导电高分子材料聚吡咯的研究进展[J].化学推进剂与高分子材料,2008,6(1).

[5]聂玉静,程正载.聚苯胺的合成及改性研究现状[J].化工新型材料,2010,38(3):19.

[6]孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品,2009,30(3):73~75.

[7]张柏宇,苏小明等.聚苯胺导电复合材料研究进展及其应用[J].石化技术与应用,2004,22(6).

[9]李俊玲.神通广大的导电塑料[J].百科知识,2005,(6):14~15.

[10]应仕杰.应用潜力极大的导电塑料[J].广东塑料,2005,(12):9.

[11]李新贵,张瑞锐等.导电聚合物人工肌肉[J].材料科学与工程学报,2004,22(1):130~131.

[12]王锦成, 李龙等.高分子材料的智能性及其应用合成技术及应用[J].合成技术及应用,2004,16(4).

[13]王敏.导电塑料的应用前景[J].化工生产与技术,2002,9(2).

有机高分子材料的应用篇2

论文关键词:高分子化学 材料 高科技

论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。

人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。

一、高分子化学的内涵

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

有机高分子材料的应用篇3

高分子材料在市场的广泛应用促使生产加工设备和工艺水平不断提升,近年来,多个新型成型装备得以研制成功,并逐一投入市场。所谓高分子材料生产加工设备自然是提升高分子材料生产质量和性能的关键所在,但是结合工艺要求,其结构设计的优良化和组装的合理性才是保证这一结果的中心。

1 高分子材料生产加工设备的设计和制造

高分子材料生产加工设备中主要构成部件有:聚合反应器、纺前设备、熔融纺丝设备和长丝后加工设备。本文主要以聚合反应器、纺前设备和熔融纺丝设备为例,探讨高分子材料生产加工设备的设计和制造中应当注意的要点

(1)聚合反应器的设计和制造

聚合反应器主要是由筒身、顶盖、底盖、夹套、蛇行管、搅拌器、传动装置、动密封、静密封等部分结构组成。每一部分都有其作用和功用,如:夹套和蛇形管的主要功用便是当原料进入蛇形管和夹套之中,对其进行加热或冷却,保证其达到加工标准。

根据当前我国市场现状,聚合反应器的设计和制造主要依循的标准包含以下方面:①结构强度值和刚度值较高;②设计使用材料不可与生产物质发生化学反应;③密封性好;④产量和长径比都应当符合市场需求;⑤设计和制造成本不宜过高;⑥结构应当简单,便于生产操作和后期维修。

目前,制造聚合反应器选用较多的不锈钢材一般为1Crl8Ni9Ti不锈钢、0Crl8Ni9Ti不锈钢、0Crl8Nil2M02Ti不锈钢、iCrl2M02Ti不锈钢等。但鉴于其成本费用过高,使用范围较小。至于复合钢板、普通低碳钢、低合金钢等材料则使用较多,这些材料成本低廉,但是也有其缺陷,如复合钢板焊接加工程序较为复杂。故而,在使用过程中应当注意规避其缺点,发扬其优势。

(2)纺前设备的设计和制造

纺前设备主要包含原液混合设备(原液脱单设备、原液脱泡设备)、切片干燥设备(切片干燥机、回转+充填式干燥机、充填式干燥机、KF干燥机、BM干燥机、吉玛干燥机)和熔体匀滤设备(熔体静态混合器、熔体过滤器)。其中,应当注意在原液脱单设备的设计和制造中,脱单体设备的结构应当尽量符合标准设计:①塔体直径一般为1.8米,高度在7米左右;②塔外应当安置蒸汽管予以保温处理;③脱单体塔内部伞面五个圆锥角应当呈120°,最上面的一层伞面应当作稳固处理,避免单体脱除;④选用材质应当保证其硬度和刚度,可选用1Crl8Ni9Ti不锈钢。至于切片干燥设备的设计和制造,应当注意以下要点:①根据生产的高分子材料性质选择是否应当安装搅拌装置②安装搅拌装置则需要安装炉栅等传动装置。且为了防止生产过程中切片粘连,应当在筒体上安置立式搅拌器,在筒体中部安装炉栅搅拌器。熔体匀滤设备的设计和制造应当坚持以化熔体温度和匀化添加剂为设计原则和标准。本处以静态混合器为例,静态混合器的设计中首要考虑的便是螺旋片式元件的料流分割层数,其计算方式如下:S=2n。其中,s代指料流分割层数,n指代螺旋片元件数。再次,将螺旋片的两端分别向不同的方向进行扭转,以180。为准。将左旋和右旋的元件行交替排列对接。最后,组装完毕之后,应当予以固定。

(3)熔融纺丝设备的设计和制造

结合化纤及工业纤维熔纺设备中纺丝箱体、计量泵和纺丝组件的结构原理进行熔融纺丝设备的设计和制造。

熔融纺丝设备的主要构件包含螺杆挤出机、纺丝箱体、计量泵、冷却吹风装置、卷绕成型装置以及纺丝组件。其中,纺丝箱体的设计要求为:①耐热性好;②密封性佳;③原材料在本组件设备中滞留时间尽量缩短;④结构组装简单;⑤机体材料耐腐性较好。纺丝箱体多采用厚度为8至10毫米的锅炉钢板焊接而成,这种钢板其抗腐蚀性较好,且成本低廉,目前应用较多。

2.高分子材料生产加工设备的使用和维护

高分子材料生产加工设备的使用和维护过程中,笔者认为应当注意以下要点:第一,对于功能不同的机械设备的灵活运用。如:聚合物或无机物复合材料物理场强化制备机械一一十螺杆挤出机。这种设备的使用就应当注意反应器的使用和操作,如果生产材料质量出现问题,就应当首先考虑到是否由原材料在机体内部连续反应不足或混炼完成度低所导致,因而,此时应当首要检查反应器。第二,高分子材料生产加工设备的密封性能应当列入日常维护范畴。由于高分子材料的生产是一个内部反应过程,因而其密封性是保证生产材料材质和性能的主要因素。生产加工设备中密封组件较多,如聚合反应器,以至于其组件中使用到密封装置。第三,生产加工设备制作材料的维护,为了防止制作高分子的原材料和机壁接触后发生化学反应,一般是使用钢材和化合性材料,且在材料外壁上涂装涂料以防腐蚀。仪器设备生产加工时间过久,其防护层难免会脱落,加之生产过程中的摩擦和撞击,也都会走造成机体内壁受损。因而,在生产加工设备使用一段时间之后,都应当拆卸机体,检查内壁是否受损。第四,传热装置的维护。一般情形下,使用过程中若出现成品材料出现被污染的情形,推测其原因可能是反应器传热装置出现故障。具体而言,可能由反应器密封性被破坏所致,也有可能缘于由机体内部粘附物。因而,在使用过程中,应当严格控制聚合的温度,且在后期维修过程中,定期拆卸清洗。

结束语

随着我国市场经济的持续发展,科学技术水平的不断提升,工业生产领域也得到了长远的进步和发展。由此,只有做好新材料生产加工设备的设计、制造、使用和维护工作,方可有效促进高分子材料研究的发展和进步。

参考文献

[1]赵丽娟,裴晨,赵可清等.高分子材料加工在线检测研究进展[J].高分子通报,2011(3)

[2]徐晓英,王世安,王辉等.复合导电高分子材料微观网络结构及导电行为仿真分析[J].高电压技术,2012(9)

[3]和法国,谌文武,韩文峰等.高分子材料sH固沙性能与微结构相关性研究[J].岩土力学,2009(12)

[4]马永金,李世通.新型高分子材料配混挤出技术及成套装备开发[c].//2011年中国工程塑料复合材料技术研讨会论文集.2011

有机高分子材料的应用篇4

【关键词】晶体学;材料化学;课程模块

现代科学技术赖以发展的各种材料主要以固态形式存在。按照基本粒子排列的有序程度,固态物质可以分为晶态、非晶态和准晶态。鉴于大多数材料只存在于晶态之中且晶态材料具有特殊的规则性,在近代自然科学体系中,通过晶态获得微观立体结构信息已成为极其重要的研究渠道。因此,晶体学是材料科学发展的重要支柱。

材料化学是材料科学的重要分支,是一门研究材料的制备、组成、结构、性质及其应用的科学[1-2]。在材料化学的课程学习中,对于材料结构的认识尤为重要[3]。本文结合本科教学实践,分析了《材料化学》课程的特点和存在的问题,阐述了以晶体学为主线的课程设计及教学方法。

1 《材料化学》课程的特点及存在的问题

首先,《材料化学》是材料类专业的重要专业基础课,课程内容多,涵盖了材料的制备、结构、性能及应用。从所涉及的材料来看,包括金属材料、无机非金属材料、高分子材料、纳米材料、功能材料等。这就要求《材料化学》授课教师的知识面广,在内容组织上不仅能体现不同材料各自的特点,还要强调它们之间的联系。

其次,不同于《无机化学》等课程,作为一个较新的学科和课程,《材料化学》不具备经典、权威教材。目前,各大出版社的《材料化学》教材内容各不相同,有些甚至差别较大。此外,新材料的开发、传统材料的升级一直是研究热点。因此,材料相关的理论和知识日新月异。如何将新技术、新成果引入到《材料化学》课程中,做到知识与时俱进,是课程教学中面临的一个重要问题。

2 以晶体学为主线的《材料化学》课程教学

2.1 课程内容模块化

按照材料化学专业培养目标及山东科技大学人才培养的特点,材料化学课程选用李奇教授编写的《材料化学》作为教材。根据对本课程的理解,以晶体学基本原理为主线,将课程内容进行模块化整合,分为背景模块、晶体学原理模块、金属材料模块、无机非金属材料模块、高分子材料模块和学科前景模块。

2.2 课程设计及教学方法

背景模块主要介绍材料化学课程在材料科学中的地位、材料化学课程内容、学习目的及学习方法,结合实际例子(如摔不碎的纳米陶瓷刀,“敲不碎、砸不烂”的“玻璃之王”――金属玻璃等)激发学生对课程的兴趣。

晶体学原理模块中以晶体的周期性和对称性为教学重点,结合宏观实例解释微观的概念和原理。鉴于晶体学原理模块内容较为抽象,在教学过程中采用多媒体与模型(主要是球棍模型)相结合的方式,通过对比教学加强学生对基本概念和原理的掌握。从晶体与非晶体的异同入手引出晶体的周期性和对称性,从晶棱、晶面和晶胞三个层次分析晶体的特点,结合X射线衍射完整讲解晶体学知识,引导学生构建完整的晶体学理论框架。

在学习晶体学知识的基础上,金属材料模块、无机非金属材料模块和高分子材料模块分别从三大类材料各自的结构出发结合制备方法引出材料的性能及应用。在金属材料模块的教学中,结合前期《无机化学》中有关金属晶体的知识,引出“等径圆球密堆积”的模型,从而分析金属单质一维、二维和三维密堆积的基本形式。为了使学生更好的理解二维密堆积中四面体空隙和八面体空隙的产生,在教学中将学生分成若干小组,每组发放一定数量的乒乓球(代表金属单质原子),请学生动手排出密堆积的形式。另外,准备已组合好的模型,让学生从不同角度观察二维密堆积,查找四面体空隙和八面体空隙的位置。通过二维密堆积的详细讲解和学生的动手组装,使学生更好的理解密堆积,为后续金属单质的三维密堆积和合金结构的学习打下良好的基础。

在金属材料中除了金属晶体之外,还涉及到准晶这一特殊的结构。与晶体的长程有序不同,准晶具有长程准周期性平移序和非晶体学旋转对称性。这部分的教学中着重强调准晶与晶体在结构上的不同,并由此引出其制备和性能的特殊性。

在无机非金属材料模块的教学中,引导学生从比较离子晶体与金属晶体的结构区别入手,结合球棍模型的组装,使学生掌握离子晶体结构的解析方法。着重强调离子晶体结构分析中以往学生经常出现的错误。例如氯化铯(CsCl)晶体的解析,学生在根据晶体结构示意图(图1)进行分析时往往得出其为体心立方结构,但实际上CsCl晶体应该是简单立方结构。该错误的出现是因为学生并未掌握离子晶体结构分析要点。在离子晶体的结构解析中,应首先分析负离子(或正离子)的排列方式,然后查找正离子(或负离子)的位置及其占据的空隙类型,最后分析正负离子的配位数以及每个晶胞中所含正负离子个数。只有按照这样的分析方式才能正确得出晶体结构。在学生熟悉无机材料典型的晶体结构后,引出无机材料的经典制备方法,并比较各种方法间的差异,由此得出材料的性能和应用。在晶态无机材料的教学中,穿插近代科研中比较热门的碳材料(如碳纳米管、石墨烯等)和分子筛材料,分析这些材料的特殊结构及由此衍生出的特殊性质和应用。例如,分子筛材料特殊的孔道结构使其具有择形催化性能并在石油化工领域中有着非常重要的应用。

图1 氯化铯(CsCl)晶体的结构示意图

另一方面,在无机非金属材料中还涉及到非晶态材料。教学过程中通过晶体结构的周期性和对称性,引出非晶态材料(如玻璃等)的结构特点,注重新兴非晶态材料(如金属玻璃)的合成及性能。

在高分子材料模块的教学中,引导学生总结高分子与小分子在结构上的差异,引出高分子的晶态、非晶态、液晶态和取向态。结合偏光显微镜对球晶的观察,使学生进一步明确晶态高分子与金属晶体、离子晶体等的区别。通过高分子材料的晶态没有小分子完善,而其非晶态的有序性却高于非晶态小分子,引出高分子材料具有小分子所不具备的特殊性能和应用。

在前景展望模块,主要从化学的角度针对材料的发展进行分析,使学生认识到材料的特殊魅力。结合材料化学的发展前沿,提高学生对材料学科今后发展趋势的认识,为学生成为材料专业技术人才奠定坚实的基础。

3 结语在材料化学课程教学中,以晶体学为主线将金属材料、无机非金属材料和高分子材料串联在一起。采用比较式教学、多媒体和模型相结合的教学手段,加深学生对材料结构、制备、性能和应用的理解和认识,提升学生分析解决问题的能力。

【参考文献】

[1]米晓云,张希艳,柏朝晖,等.科研对材料化学课程教学的促进作用[J].现代教育科学,2009,1:112-114.

[2]陈龙,亓昭鹏,黄良芳,等.《材料化学》选修课教学改革初探[J].科技视界,2014,23:23.

有机高分子材料的应用篇5

【关键词】高分子材料成型加工 教学改革 课程设计

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)14-0010-02

在高分子科学的学科构架中,形成了高分子化学、高分子物理、高分子工程三个基础性分支学科,以及功能高分子及高分子新材料两个综合性研究领域。高分子材料成型加工属于高分子工程研究的范畴,高分子工程的主要研究线索是,研究在外场(剪切力、振动力、温度、压力等)作用下,高分子的链运动、相态及结构的变化规律和控制条件,从而发展聚合物成型的新方法和新技术。

高分子材料是材料领域的后起之秀,它具有许多其他材料不可比拟的突出性能,在尖端技术、国防建设和国民经济各个领域已成为不可缺少的材料。大多数高分子材料需要经过成型加工才能形成制品,无论金属、陶瓷、玻璃还是天然材料,没有哪一种材料能像高分子材料那样,其最终结构与性能都强烈依赖于加工过程。高分子材料加工过程是控制聚合物制品结构和性能的中心环节,内容涉及高分子物理、高分子化学、聚合物流变学、机械、计算机模拟等多学科,其任务是了解高分子材料的加工特性,确定最适宜加工条件,制取最佳性能产品,为合成具有预期性能的高分子材料提供理论依据。

高分子材料成型加工是高分子材料与工程专业最重要的专业核心课程之一。高分子材料成型加工的工程本质决定了它是一门多学科交叉、科学与工程紧密结合的学科。为使学生建立起大工程的观点,理解其精髓,本课程的讲授会涉及以上诸多学科的内容,要使学生在有限的学时内掌握这门课的基本内容,并且通过对高分子材料成型加工课程的学习,具有高分子材料及其制品设计、生产和研究的科学思维以及创新研究素质,无论对授课老师还是学生而言都是一个新的挑战。笔者结合自身讲授高分子材料成型加工课程的教学实践,在课程体系、教学内容、教学方法等方面提出以下几点看法。

一 加强课程的横向联系

高分子材料的生产有三大关键要素:适宜的材料组成、正确的成型加工方法、配套的成型机械及成型模具。要生产出一个有使用价值,能够利用现有成型设备进行加工的高分子材料制品,必须同时满足以上三个要素。高分子材料生产三个要素之间相互联系、相互影响,是一个不可分割的有机整体。从这个意义上来看,高分子材料成型加工与成型机械的联系应是非常密切的。

高分子材料成型加工与高分子材料成型机械是高分子材料与工程专业的两门专业基础课,这两门课程在本质上有密切的联系,高分子材料成型加工课程包括原材料树脂、助剂、配方设计、成型设备、成型模具、工艺条件及控制等方面,高分子材料成型设备课程主要讲述不同加工方法所采用的成型设备,如开炼机、密炼机、挤出机、注塑机、压延机、中空吹塑机等,从其包括的课程内容看,成型加工和成型机械相互渗透、相互联系,也有交叉重叠的内容,因此有必要对这两门课程的教学内容从整体的高度重新进行规划。

在这个原则的指导下,教师在教学中可以按照原材料、设备、工艺这三大要素组织教学内容,从而把两门课的知识点有机地融合起来,加强课程的横向联系,打破传统的教学模式,培养学生的大工程观。如在讲授聚氯乙烯(PVC)管材挤出成型工艺这部分内容时,教师首先讲授挤出所用的原材料配方(PVC树脂、各种助剂),由于PVC树脂牌号众多,不同牌号的树脂制备方法不同,树脂的性能也不同,在加工过程中所选用的工艺也会有所差异,因此,教师在开始讲授成型工艺时,有必要使学生具备原材料选择这个意识。然后介绍管材成型所需的设备(包括挤出机类型、机头口模、螺杆结构、螺杆组合、传动系统、控制系统、辅机)。如在讲解螺杆时,可分析各种螺杆结构参数对成型加工的影响,各种不同混合、混炼元件的螺杆组合所具有的加工特性,并结合PVC管材生产工艺特点,讲解生产PVC管材所用螺杆的选用原则。在讲解挤出机机头口模时,可将机头口模流道的设计、口模类型等涉及成型机械的内容引入课堂中,使学生掌握有关机头口模设计的基本原则。最后,讲授PVC管材生产的工艺条件及控制方法(螺杆转速、牵引速度、挤出机及机头温度)及其对制品性能的影响。

教学内容改革是21世纪高等教育教学改革的重点,将高分子材料成型加工与成型机械有机结合起来,重新组织课程内容既有利于教师的教学与学生的学习,增强理论教学的课堂教学效果,同时节约下来的理论教学课时可用于实践教学环节,培养学生的动手能力和创新意识,提高在社会上的竞争力,也符合高分子材料加工行业对本专业毕业生所提出来的越来越高的要求。

二 按课程主线组织教学内容

本课程以“材料―成型加工―制品性能”这条高分子材料成型加工的主线组织教学内容,重点了解和掌握高分子材料、成型加工工艺、制品性能三者的关系;材料的不同与成型加工方法的关系;同样的材料用不同的加工工艺方法或加工工艺条件,所得制品的性能为何不同;制品的性能

――――――――――――――――――――――――――

* 基金项目:广东石油化工学院教育科学研究基金项目

与材料本身的性质有何关系等,强调了成型加工对制品性能的重要性,即高分子材料最终的结构与性能强烈依赖于加工过程这一独特之处,这是本课程的主题思想――高分子材料的工程特征,教师在教学过程中,将这一主题思想贯彻始终是本课程教学的首要目标。

在教学过程中,任课教师应将高分子科学基础理论与实际生产和日常用品的例子相结合,与学生进行分析和讨论,启发学生在学习过程中牢牢抓住本课程的主题思想。对于聚合物来说,具体结构决定了它的性能,同一种链结构的聚合物,由于成型加工条件的不同,分子链的排列与堆砌方式会有所不同,从而形成不同的聚集态结构,聚集态结构不同,制品性能也大不相同。如生产聚丙烯注塑件时,聚丙烯注塑制品最终的物理性能不仅与本身分子量和结晶性等有关,而且与注射工艺条件的控制有关。不同的工艺条件导致聚丙烯具有不同的微观结构,而微观结构又直接影响聚丙烯注塑制品的强度、韧性、硬度以及成型加工等性能。如聚丙烯注塑件的光学性能会受到注射成型条件的影响,聚丙烯注塑件在冷却过程中,由于塑件不同部位的温度场、应力场的分布不同,从而会造成注塑件内不均匀的体积收缩和密度分布,因此严重影响了塑件的光学性能和力学性能。这些例子很好地体现了“高分子材料―成型加工―制品性能”这条高分子材料成型加工的主线。

三 对教学方法进行改革

1.多媒体教学

高分子材料成型加工属于专业技术课,教学内容具有很强的理论性和实践性,许多内容涉及成型机械的结构以及具体的操作过程,在学生大多缺少实际感性认识的情况下,单纯依靠文字的板书进行课堂教学,学生难以理解,教学效果不理想。因此,课堂讲授可借鉴国内一些院校的聚合物成型加工精品课程网站的教学资源来制作多媒体课件,通过结合所用的教材,有选择性地将多媒体动画仿真和图片资料补充到电子课件中,不断修改完善课件内容,增加课堂信息量,提高教学效果,激发学生的学习兴趣。为了加深学生对实际生产过程各种机械设备、操作工艺的认识,教师可通过收集各种高分子材料成型加工厂的生产视频,然后在课堂上进行播放讲解,可增加学生对高分子材料成型加工工艺的感性认识。如在讲薄膜的中空吹塑时,大多数学生对旋转机头的工作方式比较陌生,笔者通过给学生播放带有旋转机头口模的中空吹塑生产过程,学生在录像中可以很直观地看到旋转机头在工作中的运行情况,以及旋转机头如何调整薄膜厚度的工作原理,这些都使学生感受到课本的理论知识并不是枯燥的,它来源于生产实际,并对生产实际起到指导作用。

除了在课堂上引入多媒体课件外,教师还可向学生推荐一些著名的专业网站,包括美国塑料工程师学会(SPE)、美国塑料工业协会(SPI)、中国注塑技术论坛、聚合物技术网等,鼓励学生了解加工工程的前沿发展,从而提高学生的学习兴趣。

2.案例教学

为了提高学生分析问题和解决问题的能力,经常以日常生活中常用高分子材料制品进行案例教学,帮助学生认知高分子材料成型加工的整个过程,如日常用到的笔记本外壳、空调外壳、排水管、薄膜、泡沫塑料、汽车轮胎等,启发学生去思考,然后进行讨论,针对常用制品分析所用的原材料、成型方法和工艺,使学生在看得见、摸得着的实例中体会所学知识,这样的教学方法提升了学生学习效率和学习效果。在实际教学中,教师可给学生提供一些案例,如某个工厂某批次的注射件出现了应力开裂现象,试让学生讨论分析其中的原因,并提出解决方案。通过课堂讨论,学生从这一案例中可学到包括原材料、成型方法、成型工艺条件(温度、压力)、制品性能(应力开裂)在内的许多知识点,很好地将高分子材料基础理论与生产实际相结合,学生可以充分理解“高分子材料―成型加工―制品性能”这一课程的主题思想。

3.课程设计

作为大工程观教育理念的一部分,培养具有敏锐工程师意识的学生是工科教学的一个重要目标,高分子材料成型加工课程作为一门实践性很强的学科,可为学生将来走进企业站稳脚跟打下良好的基础,因此,在教学中引入项目教学的理念,让学生利用各种校内外的资源及自身的经验,通过完成给定的工作任务来获得知识与技能。本专业的课程设计是以高分子材料生产流程为主线,实现项目教学,以培养学生的创新能力。

设计内容可以典型的通用高分子材料(如聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯等)的生产任务为依托建构、设计出一个高分子材料产品生产项目(包括厂址的选择、原料选择、配方设计、高分子材料加工方法、设备的选型以及生产成本的核算等)。它有效地解决了传统教学中理论与实践相脱离的弊端,使理论教学内容与实践教学内容通过课程设计紧密地结合在一起。在设计的过程中,学生通过互联网查找大量的资料、数据,通过到企业调查,掌握了许多第一手资料,在这个过程学生可以概括性地知道所学专业的主要工作内容及其在整个生产过程中所起的作用。

四 结束语

高分子材料成型加工是一门实践性很强的专业技术课程。结合该门课程自身的特点,通过采取加强课程间的联系,抓住课程主线教学、改革教学方法等措施,力图改变该课程课堂讲授效果不高、学生学习积极性普遍较低等现象。

在不断深化教学改革的过程中,要想使学生学有所得、融会贯通,首先应提高学生在高分子材料产品的设计、生产和研究等方面的综合应用能力,从而培养具有卓越工程师意识的高分子材料专业技术人才。

参考文献

[1]申长雨、关绍康、张锐.加强课程建设 培养创新人才――“高分子材料成型加工”课程建设随想[J].中国大学教学,2008(3):52~54

[2]胡杰、袁新华、曹顺生.《高分子材料成型加工》课程教学中的几点思考[J].科技创新导报,2010(4)

[3]李宝铭、张星、郑玉婴.高分子材料成型与加工课程建设初探[J].化工高等教育,2010(3):39~41

[4]唐颂超.高分子材料成型加工课程建设与教学改革[J].化工高等教育,2008(1):25~27

有机高分子材料的应用篇6

[关键词]材料发展、金属材料、无机非金属材料、高分子材料

人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代……

100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量整理的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

现在人们也按化学成分的不同将材料划分为金属材料,无机非金属材料和有机高分子材料三大类以及他们的复合材料。

金属材料科学主要是研究金属材料的成分组织、结构、缺陷与性能之间内在联系的一门学科。金属材料科学与工程的工作者还要研究各种金属冶炼和合金化的反应过程和相的关系,金属材料的制备方法和形成机理,结晶过程以及材料在制造及使用过程中的变化和损毁机理。对其按化学成份进行分类可以分为钢铁、有色金属以及复合金属材料。按用途分类包括结构材料和功能材料。

金属基复合材料(MMC)因其良好的性能而得到了人们广泛的关注。它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体。目前,特别是航空航天部门推进系统使用的材料,其性能已经达到了极限。因此,研制工作温度更高、比刚度和比强度大幅度增加的金属基复合材料,已经成为发展高性能结构材料的一个重要方向。1990年美国在航天推进系统中形成了3250万美元的高级复合材料(主要为MMC)市场,年平均增长率16%,远高于高性能合金的年增长率1.6%。无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。无机非金属材料已从传统的水泥、玻璃、陶瓷发展到了新型的先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维、半导体材料以及光学材料。由于新型无机非金属材料除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等,因此它们已成为现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。

有机高分子材料的应用篇7

一、芳香稠环化合物

芳香稠环化合物具有较大的共轭体系和平面及刚性结构,一般都具有较高的荧光量子效率,其量子效率与稠环的数目成正比,与取代基的关系比较复杂,人们主要用取代基来调节其溶解性能。近年来,在这方面的研究主要集中在及其衍生物上(见下图)。其荧光发射光谱波长λem=580nm,已被广泛用于激光领域。带有双羧基脂的衍生物2具有强烈的黄绿色荧光,由于它的水溶性好,常用于公安侦测方面的甲酸二酰亚胺衍生物3具有由橘色到红色的强烈荧光,具有鲜艳的色彩和较高的量子产率,对光、热、有机溶剂有良好的稳定性,因而特别适用于热塑性塑料的染色以及液晶显示和太阳能收集领域。当x为氨基或胺基时有兰色的荧光,常用于染料着色及汽车油漆中。晕苯4由于较强共轭程度及分子刚性更大,因此具有更好的荧光性能,荧光发射波长为λem=520nm,是一种非常理想紫外电荷耦合显示(uV-CCD)材料。目前有关晕苯应用、于雷达方面的研究正在进行。化合物5具有强烈的橘红色荧光,λem=584nm,同时还具有0.84的量子效率,所以在染料激光和光能收集系统方面具有相当大的发展潜力。

二、分子内电荷转移化合物

具有共轭结构的分子内电荷转移化合物是目前研究最为广泛和活跃的一类。其中应用较多的主要有以下几类:

(1)芪类化合物

芪类化合物两个苯环之间具有共轭结构,光照时发生的是分子整体的激发,进而引起分子内的电荷转移发出荧光。芪类化合物是用于荧光增白剂中数量最多的荧光材料,同时也被应用于太阳能收集领域及染料着色领域。在两个苯环分别带有供电和吸电取代基时,当化合物吸收光被激发而处于激发态,分子内原有的电荷密度分布发生了变化。硝基和氨基取代衍生物的量子效率达0.7,它在苯中荧光发射波长为λem=590nm。

(2)香豆素衍生物

香豆素衍生物荧光材料在品种和数量上仅次于芪类化合物。可以作激光染料、荧光染料、太阳能收集材料等,荧光量子效率甚高,从其分子结构中可以看出,香豆素衍生物是由肉桂酸内酯化而成,即通过内酯化过程使肉桂酸酯双键被保护起来,从而使原来量子效率较低的肉桂酸酯转变为具有较高量子效率的香豆素衍生物,通过对香豆素母体进行化学修饰可以调整荧光光谱。目前,已有报道将香豆素作为发光材料用于有机电致发光材料,获得了蓝绿一红色发光。但是,香豆素衍生物往往在溶液中才具有高的量子效率,而在固态下容易发生荧光淬灭;因此在用作发光材料时,多采用混合掺杂的方式。

(3)吡唑啉衍生物

吡唑啉衍生物是由苯腙类化合物通过环化反应得到的。因为环化导致苯腙内双键受到保护,从而使这类化合物表现出强的荧光发射。这类化合物由于在溶液中可以吸收300~400nm的紫外光,发出很强的兰色荧光,被广泛的用于荧光增白剂。吡唑啉衍生物还可作为有机电致发光材料。

(4)1,8-萘酰亚胺

衍生物这类荧光材料色泽鲜明,荧光强烈,以被广泛用作荧光染料和荧光增白剂、金属荧光探伤、太阳能收集器、液晶显色、激光以及有机光导材料之中。

若在其中引如磺酸基、羧基、季铵盐,则可以制得水溶性荧光材料。若引入芳基或杂环取代基,则能有效地提高荧光效率,同时使荧光光谱向长波方向偏移。

(5)蒽醌衍生物

蒽醌类荧光分子是以葸醌为中间体制得的,具有良好的耐光、耐溶剂性能,稳定性较好,也具有较高的荧光效率。

(6)罗丹明类衍生物

罗丹明是由荧光素开环得到的,两者都是黄色染料并都具有强烈的绿色荧光,广泛应用欲生命科学当中。罗丹明系列的荧光材料绝大部分是以季铵盐取代原来的羟基位置而得。为了提高荧光效率,将两个氮原子通过成环置于高刚性的环境中,可使荧光效率接近1,同时还具有良好的热稳定性。罗丹明测定物质含量的方法可以说是非常成熟的。

三、金属配合物荧光材料

许多配体分子在自由状态下不发光或发光很弱,形成配体后转变成强发光物质。如8-羟基喹啉是一个常用的配位试剂,几乎可以认为不发荧光。在与A13’配位后形成的8-羟基喹啉铝(Alq)就具有很好的荧光性能。此外8-羟基喹啉还能与Be、Ga、In、Sc、Th、zn、zr等金属离子形成发光配合物。这是因为形成配合物后,配体的结构变得更为刚性,从而大大减小了无辐射跃迁几率。使得辐射跃迁几率显著提高。某些Sehiff碱类配体及杂环衍生物分子所形成的配合物也可以形成很好的发光配合物。

在金属配合物荧光材料中,稀土型配合物具有重要意义。稀土离子既是重要的中心配体离子,也是重要的荧光物质,广泛作为荧光成分在众多领域获得应用,如电视机屏幕和仪器仪表显示等场合。稀土高分子配合物荧光材料的研究早在20世纪60年代就以开始,几年来,由于这种材料兼有稀土离子的发光性能和高分子材料易于加丁的特点,引起广泛关注。稀土配合物的高分子化方法主要有混合掺杂和直接高分子化两种形式。前者是将小分子稀土配合物和聚合物混合得到高分子荧光材料,后者是将化学键合的方式先舍成稀十配合物单体,然后与其他有机单体共聚得到共聚型高分子稀十荧光材料,或者稀土离子直接与带有配位基团的高分子进行配位反应,直接生成高分子配位的荧光材料。

(1)掺杂型高分子稀十荧光材料

由于小分子稀十配合物的研究已经相当透彻,关于配位和荧光机理在此不作讨论。把有机稀十‘小分子配合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高配合物的稳定性,另一方面还可以改善其荧光性能,这是由于高分子共混体系减小了浓度效应的结果。采用这种方法,将稀十Eu荧光配合物掺杂到塑料薄膜中可以得到一种称为转黄膜的农用薄膜,可以吸收太刚光中的有害的紫外线,转换成可见光发光,据说可以提高农作物的产量达到20%。掺杂方法虽然具有简单方便的优点,但是得到的高分子材料透光性差,机械强度降低的问题。当稀十配合物在混合体系中浓度相当高时仍然可以发现浓度猝灭现象。

(2)键合型高分子稀土荧光材料

先合成含稀十配合物的单体,然后用均聚或共聚方法得到配体与高分子骨架通过共价键连接的高分子稀十荧光材料。用这种方法得到的荧光材料中稀十离子均匀分布,不聚集成簇,因此在相当高的浓度下仍不出现浓度猝灭现象。还可以得到透明度相当好的材料,甲基丙烯酸酯、苯乙烯等是常用的单体。

有机高分子材料的应用篇8

关键词:机械设计;材料;选择;应用

机械行业的发展是现代化工业体系创建的重要保障,当前机械需求量增加迅速,对于质量和使用性能的要求也越来越高,材料的选择和

有机高分子材料的应用范文

有机高分子材料的应用篇1关键词:高分子材料;导电机理;导电塑料;用途文章编号: 1005–6629(2012)5–0071–04 中图分类号: G633.8 文
点击下载文档
确认删除?
VIP会员服务
限时5折优惠
回到顶部