继电保护系统发展现状范文
继电保护系统发展现状篇1
关键词:继电保护;现状;发展
电力系统是当前社会发展中的主要基础设施,电力系统的发展是保证社会发展的基础前提,是实现社会稳定的主要手段和措施。当前社会发展中的各种生产设备和生产工具都离不开电力系统的支持。随着当前人们对电力系统的要求不断增加,各种先进技术和设备在电力系统的应用也在不断地增加之中。继电器保护技术是电力输送过程中的基础,是实现电力良好有效发展的前提。
1.继电保护发展现状
电力系统的飞速发展对继电保护不断提出新的要求,随着当前社会发展过程中,计算机技术和信息技术的不断发展,继电器保护技术不断的出现了新的发展模式和发展理念,成为当前电力系统中的主要发展前提和手段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在经济建设的过程中,随着各种技术的不断发展与完善对集线器的开发和研究也在不断的加快。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外各种先进技术和科学理论,通过对国外先进技术的引进来实现继电器保护设备的性能和工作流程,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,是通过对国家各个教育体系和教学体系进行指导,通过对专业人才的培训来增加保护技术过程中容易出现问题的过程,因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
2.继电保护的未来发展
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
2.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。
2.2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
2.3 保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。
2.4 智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
3.结束语
继电保护系统发展现状篇2
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里得到很大发展。
二、继电保护的未来发展
(一)计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:8位单CPU结构的微机保护问世―多CPU结构―总线不出模块的大模块结构。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。
(二)网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域,为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。在国外早已提出过系统保护的概念,这在当时主要指安全自动装置。但因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。而实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
(三)保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,即放在被保护设备附近。OTA和OTV的光信号输入到一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。主控室通过网络可将对被保护设备的操作控制命令送到一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
(四)智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法都可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
建国以来,虽然我国电力系统继电保护技术得到很大发展。但随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势,趋向计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化发展,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
继电保护系统发展现状篇3
关键词:电力系统 继电保护发展趋势
中图分类号:F470.6 文献标识码:A 文章编号:
正文:
一、电力系统继电保护概述
1.电力系统继电保护的基本原理
电力系统的继电保护装置就是指电力系统运行过程中电气元件在发生故障时能及时发出信号,并使断路器跳闸产生动作的一种自动装置。为了完成对电力系统相关装置的安全保护任务,电力系统的继电保护装置通过借助正确区分的保护元件来检测被保护的装置是否处于正常的工作状态。也就是说,继电保护装置一般是根据电力系统发生故障前后电气物理量变化的特征为基础来对被保护的装置进行保护的。其中,用于继电保护状态判别的故障量随所处电力系统的周围条件而异,也随被保护对象的不同而不同。当前应用最为广泛的故障量是工频电气量。工频电气量指的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其他量,如功率、相序量、阻抗等,从而构成电流保护、电压保护、阻抗保护、频率保护等。
2.电力系统继电保护装置的作用
电力系统的日常运行中较常见的故障主要有断线、短路、接地、负荷过载以及振荡等。上述故障如果处理不及时或处理不当往往会引发大范围的电力系统事故,从而导致电力系统的全部或部分的正常运行状态遭到破坏,导致电能质量破坏和设备损坏,损失非常巨大。一般对上述故障的有效处理措施就是采取相关有效措施迅速地将正常运行的系统与故障部分隔离,从而将故障造成的影响和损失尽量减少。为保证电力系统的安全稳定运行,有效避免事故的扩大。通常,依靠人的判断和处理是来不及的,在系统发生故障时务须由相关的继电保护装置完成电力系统故障的安全保护。3.电力系统继电保护装置的任务一般而言,电力系统继电保护装置的任务有:一是值班管理人员可以通过继电保护装置及时掌握处于不正常运行状态的电气元件的反应,以便能够及时处理,从而有效避免相关电气设备的损坏以及安全事故的发生;二是继电保护装置自身能够迅速地将电力系统中的故障元件有选择地进行切除,从而确保其他无故障原件的正常运行。
二、继电保护的基本要求
继电保护是电力系统的一个重要组成部分,担负着监督系统运行状况和及时处理系统故障的重要职责,是保证电力系统安全运行的重要设备。选择性、可靠性、速动性、灵敏性是对它的四项基本要求。
选择性是指当电力系统中线路或设备发生短路故障时,负责本段线路的继电保护装置会动作,此时其他线路的继电保护装置不动作,而当其拒动时,相邻设备或线路的保护装置会作为后背保护将故障切除。
速动性是指电力系统发生故障时,继电保护装置应能够快速地将故障切除,将故障可能对人和设备造成的损害降低到最小程度,提高系统并列运行的稳定性。
灵敏性是指当电力系统中线路或设备发生短路故障时,继电保护装置的及时反应动作能力。在规定范围内发生故障时,不论故障点的故障的类型和位置如何,以及故障点是否存有过渡电阻,能够满足灵敏性的要求的继电保护都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。可靠性是指继电保护设备能够安全稳定的工作动作,不发生在故障时拒动或无故障时误动的情况。
三、继电保护的发展趋势
在未来智能电网中,电网的自愈特征将会对继电保护的选择性、可靠性、速动性、灵敏性提出更高的要求,对常规继电保护的配置方法提出新的要求,常规保护在这几个方面根据实际情况的不同会有所侧重。如在特高压电网的建设、电网规模的扩大等因素,将导致短路电流增大很多,因此,短路电流增大造成的定值可靠性降低。然而,挑战往往是与机遇并存的,智能电网的发展从另一个角度也将给继电保护的发展带来新的契机。根据智能电网发展的特点与趋势,可以预计它将会在以下几方面推动继电保护技术的发展:
3.1 信息数字化信息的数字化
包括两个方面,一是测量手段的数字化,新型的继电保护装置将广泛采用电子式互感器和数字接口;二是信息传输方式的数字化,传统继电保护设备采用的模拟量电缆传输和状态量电缆传输方式将被淘汰,取而代之的是以光纤为媒介的网络数字传输方式。随着智能电网的建设及智能化设备的广泛使用,传统的互感器将逐步退出运行。而且电子式互感器采用网络接口,通过网络保护装置和智能断路器连接,大大简化了二次回路接线,使之易于维护。
3.2 通信网络化
电力系统继电保护与计算机网络相结合是现代电力系统实现稳定安全可靠运行的重要的保证。通信网络化使每个保护单元都能够实现共享全部故障信息与系统运行的数据,并且使各个保护单元之间与自动重合闸装置能够在分析这些数据信息的基础之上做出协调的动作。这样就在各个保护单元之间形成了一个互联网,增加了保护单元之间的联系,最终实现微机继电保护装置的网络化。
3.3 动作智能化
智能电网要求继电保护装置能够利用全网信息准确、实时地判断运行方式并且调整定值,实现真正意义上的在线整定。近年来人工智能技术在电力系统的各个领域都得到了广泛的应用,使得电力系统继电保护技术的研究迈进了更高层次,逐渐向着微机化的趋势不断发展。例如利用神经网络的方法,经过大量的故障样本训练,只要充分考虑了现场各种情况,则发生任何的故障时都能够作出确判别,最终做出正确动作。
3.4 综合自动化
计算机技术、通信技术和网络技术高速发展,使得微机继电保护装置具有了可以从网上获得电力系统运行状态与各种故障的数据信息的能力,并且微机继电保护装置也可以将它从网上获得的电力系统被保护元件的数据与信息传送给网络控制中心和其他的保护单元,及时在继电保护系统中完成继电保护的各项功能,如监视、测量、控制、保护、数据通信等。从而实现了测量、控制、保护、数据通信等各方面的综合自动化。
3.4.数字化技术的应用
随着社会经济的不断发展和科学技术的革新,数字化技术在电力系统继电保护领域的应用越来越广,数字化变电站的建设已经成为电网建设的主流。数字化变电站是指变电站的信息采集、传输、处理、输出过程全部数字化。数字化继电保护装置原理是利用电子互感器采集数据,数据在互感器内通过光纤利用光数字信号将数据传到低压端,在MU(合并单元)处理后得出符合标准的数字量输出。其涵盖了变电站的全部范围,比如一次设备的互感器、断路器、变压器,二次设备中的保护、控制、通信,以及软件开发、系统建模、数据应用等。数字化技术的应用:一是智能化继电保护测试仪。随着智能化变电站的投入和普及,数字化测试设备在电力用户和制造厂中的需求呈上升趋势。二是全数字化变电站的动态仿真系统。智能电网推广的重要举措就是建设具有数字化、信息化、自动化、互动化特点的数字化变电站,然而目前大多数变电站无法有效检测继电保护二次设备的性能,只有全数字化变电站才能实现设备检查和监测功能。
3.5继电保护输电技术的突破
随着电力电子技术的发展、直流输电技术日益成熟,多种新的发电方式所产生的电能都要以直流方式输送,比如磁流体发电、电气体发电、燃料电池和太阳能电池等,直流输电在电力系统中必然得到更多的应用。另外,超高压输电可以增加输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。
4 结束语
继电保护的技术微机化化绝不仅仅只有这几个方面,很多都要随着智能电网的发展才会慢慢体现出来。智能电网的建设是电力系统的一次重要变革,是电网未来的发展方向。目前,智能电网的建设已经初显成效,建设过程中新技术和新设备的应用已经给继电保护专业领域带来了革命性的变化,例如我国 220kV 以上的输电线路已经全部实现了继电保护技术的微机化。随着智能电网建设的推进,相关研究的深入,继电保护专业一定会适应电网需求向智能化方向发展,跟进电网建设步伐,为智能电网建设提供技术支持。
参考文献
[1]王梅义.高压电网继电保护技术[M].北京:电力工业出版社,1981.
[2]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978.
[3]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.
[4]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.
继电保护系统发展现状篇4
当前,电力资源是人们生产生活中不可或缺的重要资源,供电系统也成为保证人们正常生活和稳定生产的主要能源系统,电力系统中的任何部位出现安全隐患都会影响整个电力系统的安全运行,甚至引发大面积停电现象。由此可知,电力系统的继电保护工作十分重要和关键。随着电力系统的改革和创新,电力系统的继电保护和维修工作的难度日渐提升。继电保护是在这种背景下提出的新型保护方式,改善了传统电力系统保护方式的缺陷和不足,融合了几种电力系统保护方式的优势,在现代供电网络当中发挥了重要作用。
2继电保护技术概述
2.1继电保护技术的概念
继电保护技术的应用实质上是继电保护器在发挥作用的过程,继电保护器由开关、电流感应器等构件组成。在电流感应器感知到电流异常之后,会自动把主回路切断来保证设备不受到损坏和工作过程中不造成人员损伤。继电保护器主要具有2种功能,即过载保护和电流短路保护,一般会在设备产生漏电故障时自动启用保护功能,从而避免意外事故的发生[1]。
2.2继电保护技术的应用背景
如果不正确使用熔断电阻丝,实际运用的电流量超过了承载值,这时流经导线的电流产生的热量会将外表的绝缘层融化,这时就容易造成故障隐患。如果在日常工作中对器材的损坏较为严重并且没有及时检查和发现损坏情况,就容易影响电流的正常使用,容易造成安全隐患,从而引发安全事故,威胁人员安全。此时,继电保护技术的应用十分必要。
2.3继电保护技术的工作原理
继电保护技术是应用在设备漏电故障发生之时保护设备和保证安全工作的手段,因此,为更好地应用这项技术,相关人员需要了解它的工作原理。继电保护技术实质上是继电保护器对于设备出现漏电故障时利用其过载保护和短路保护的功能避免工作过程中安全事故的发生。在建筑电力系统工作过程中,因为使用电力系统的设备和环节过多,所以稍有不慎就容易导致安全事故的发生。然而,一般使用这些电力系统设备的人员只是普通的建筑人员,操作不当、检查不及时、对实际的使用原理不了解是当前工作团队中的常见问题,这极易导致各种漏电事故频频发生[2]。
继电保护器中利用其组成结构中的电流感应器,在感知电流异常时,保护器会自动关闭开关从而进行断电。一般的电力系统设备在电流输入的地方会安装继电保护器,通过导线一端接入电流感应变压装置,断电的开关安装在导线的在另一边,以便在电流通过时及时感知异常,从而阻断异常电流对设备的损坏。
3电力工程继电保护故障的成因
3.1人为原因造成的故障问题
在电力工程中,技术人员往往会遇到一种情况,即根据事故报警装置显示继电保护发生了故障问题,但是找不到导致这一故障发生的源头[3]。另外一种情况就是继电保护机械停止工作,事故报警装置却没有提前预警,这就使得技术人员未能判断故障产生的缘由和过程。然而,根据以往数据显示这几种故障情况的产生都是由于各种各样的人为原因,如职工在工作岗位中不集中注意力、没有采取及时有效的解决措施、操作不当等。一旦出现这种人为原因导致的故障,技术人员一定要在第一时间将情况如实向管理人员汇报,以此来保障故障解决的效率。
部分情况下,电力工程单位会发生一种故障情况就是电压失常,这种故障情况在发生时检测其开关等主要装置均不会排查到任何异常情况。但是技术人员会因主观原因导致判读不到位,进而导致故障处理方法不当,容易造成各种安全隐患。
3.2辅助工具应用不到位造成的故障问题
一般情况下,技术维修人员在解决电力工程继电保护故障问题时,会通过以往的故障汇总信息库、机械报警装置等要素来判断故障发生的原因,并确定故障处理的方法。电力工程管理人员会安排专门的负责人员来对继电保护器进行定期排查,如果系统存在故障问题,可以对系统进行针对性维修检查,这种情况和继电保护机械异常是无关的。然而,一旦排查到继电保护机械出现了异常情况,技术人员应当预先做好故障表现特征的信息备案,先规划出解决故障问题的方案再实施正确的解决措施,以此来降低故障问题造成更大损失的概率。在电力工程单位中,各种机械装置能够作为技术人员检查继电保护机械的辅助工具,因此,技术人员必须充分发挥这些机械装置的优势作用,以此来提升故障判断的准确性和故障解决的效率。在继电保护机械发生故障问题时,这时观察检测装置就会发现很多数据显示正常,出现这些情况的原因是相应的负责人员没有做到实时监测继电保护机械的工作情况,未发挥辅助工具的作用,同时,并未做好日常数据的记录,这时技术人员就会误判继电保护故障问题发生的原因,进而引发更加严重的故障问题。由此可见,一旦继电保护出现任何故障问题,技术人员必须对整个系统进行整体综合排查,以此来提高事故处理的质量[4]。
4电力系统继电保护技术的运用原则
继电保护技术是使得电力系统设备能够正常运行的手段,那么面对大量使用电力系统设备且用电环节多、大规模生产的电力企业来说,更应该注重这项技术的使用原则。
4.1三段式继电保护原则
在电力系统工作时,流过电流感应器的电流有相反的方向和相同的大小,这就说明电流是正常的,继电保护器并没有工作。一般来说在这种情况下,感应器中的感应磁通数值为零,且断电开关没有启动。而如果一切情况相反,流过感应器的电流有相同的方向,感应器中的感应磁通的数值不为零,且其中电流大小数值相等,断电开关工作,这就是设备在漏电故障情况下自动启用继电保护器的征兆。
4.2接零保护原则
一般电力系统设备如果存在导线外露的情况,管理人员会安排设备人员对接线采取接零保护,主要针对器材中带有金属的部分。一般接零保护时,只是配备保护的零线而不是熔断电阻丝。另外,开关不会安装在次要的保护零线上,接地保护零线和接零保护零线也不会安装在一起,这样能够保证继电保护器的安全使用。
4.3接地保护原则
为有效避免使用的电力系统装备接地效果受到影响,技术人员应该遵循接地保护原则。在大型轨道工具作业时,接地处理和3个以上的接地点是必备的,另外,1~4Ω是电力系统连接节点处可控的电阻率范围。接地保护是应用在电力系统设备导线外露的情况下,主要是在外露的导线并没有产生电流的情况下对其进行接地保护,从而使得工作人员在触碰外露导线时不会出现安全事故。这是任何金属外壳和装备进行接地处理时的必要措施,这样能保证每一个工作环节的工作人员在接触金属外露的部分时不会造成故障问题[5]。
4.4继电保护器的安装原则
①额定的继电保护时长。一般来说,针对不同等级的支干线额定的继电保护时长不同,一级的支干线相较于平常的保护时长会相差0.2s,而三级的额定保护时长则与其相差0.4s。②针对不同等级的支干线来说,额定的继电保护电流大小也不同,主要在0~300mA的数值范围根据不同等级的支干线分别调节。
5电力系统继电保护技术的发展趋势
5.1网络化
互联网技术的快速发展推动了社会各个领域的变革,例如,技术领域、政治领域、经济领域,等等。国民的数据信息通信工具就是计算机网络,并且在新时代占据了重要的支柱性地位,促使国民生活生产的情况出现了本质转变,其对工业生产行业产生了很大程度的影响,也使得该行业具备了有力的通信保障。近期,基于纵联差动保护的继电保护设备在新时代占据了重要的地位,对电力系统的安全、稳定、持续运行提供了保障。虽然继电保护主要的作用是体现在排除问题配件与降低安全事故影响等方面,但是该装置的作用并不仅限于此。在20世纪末,国内某大学专门为三峡水坝的回路母线研发出了一类分布型母线保护设备,这一设备是将传统的集中型母线保护划分为不同的母线保护。技术人员会在不同回路的保护屏当中安装这些保护单元,单元之间会留有一定的空隙,不同保护单元之间是通过计算机网络相连接的,这一网络会将回路的所有保护单元构建成为一个完整的体系。各个保护单元会按照该回路的电流量以及由计算机网络所得到的其余回路电流量作为参考依据,从而计算母线的差动保护数值。
当结果得出是母线发生了故障问题,那么继电保护装置就会将该回路的断路器隔离,排除故障线路。当外部发生故障问题时,任一保护单元计算结果均显示为外援故障,所以不会发生任何反应。相较于传统的集中型母线保护技术来说,当前这一类通过计算机所实现的分布型母线保护技术能够为电力保护系统提供更加稳定的技术保障。
5.2智能化
随着新型电子芯片的研发和新兴技术的快速发展,继电保护装置的智能化水平不断提升。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如,在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动。如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其他方法如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快[6]。天津大学从1996年起便开始研究神经网络式继电保护,已取得初步成果。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
5.3绿色化
近年来,国内工业领域的发展速度不断加快,国民的生活水平也日渐提升,能够享受到越来越好的物质条件。然而,在经济水平高速提升的同时环境问题日益凸显。现阶段,国内的污染情况越来越严重,资源浪费问题也越来越严峻,国家对环保节能的关注度提升,相关部门出台了很多环保相关的政策和节能策略。由此可知,未来社会将会朝着保护环境、节约能源的方向发展,由此还诞生出了环保产品的概念。无论是从设计、生产、研发、运用等角度来看,继电保护装置都和保护环境、国民健康发展的需求相关。
5.4一体化
在实现继电保护技术计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络中的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现保护、控制、测量、数据通信一体化[7]。
6提升继电保护技术应用效果的有效方法
6.1配备专业技术人员
当前,科学技术处在不断发展的状态当中,并且继电保护技术尤为重要,对于工作人员的素质提出了较高要求。相关部门需要聘请专业的技术人员,并且组织对于工作人员的专门培训,使其掌握继电保护技术的理论知识和操作原理,从而在电力系统工作中重视继电保护技术的准确运用和电力系统设备的定期排查,从而提高人员素质,促进工作安全有效开展[8]。
6.2重视继电保护器
继电保护器是继电保护技术中主要应用的设备,其使用种类和作业场所的环境都会对其正常使用产生影响。电力企业应该将继电保护器安装到固定电源处且远离对电力系统产生安全隐患的因素,从而保证继电保护器的正常使用。另外,安装具有报警器的继电保护器是必要的,这使得电力企业中的工作人员可以及时通过警报发现设备的故障和安全隐患,从而提升供电工作的质量。
7结语
继电保护系统发展现状篇5
【关键词】电力系统;继电保护;应用举措
当电力系统出现危害系统运行安全的异常故障时,将针对系统故障采取自动化的处理措施,我们将其称之为继电保护。一般而言,实施继电保护可对系统完成如下保护任务:一是当电力系统设备出现运行故障时,设备发出报警信号,提示值班人员探知故障产生的根源,及时做好故障排除工作,降低故障对整个电力系统的危害,维护电网的安全稳定运营;二是当电力系统运行状况不佳或出现系统故障时,继电保护技术可缩小排查范围、缩短排查时间,自动将故障设备从电力系统中排查出来。综上所述,继电保护对维护电力系统稳定运行存在重要的现实意义。
一、继电保护技术的发展趋势
近年来,随着现代化电力系统建设的推进,继电保护技术被广泛地应用于电力系统中,继电保护技术不断发展与完善,并且呈现出计算机化、智能化、网络化与一体化的发展趋势。现简要论述如下:
1.计算机化发展趋势。数量激增,要求继电保护系统具有良好的数据处理能力,能够存储信息和传输信息,能够有与其他系统融合联网,实现整个系统信息及数据的资源共享。现代化计算机技术的存储、传输、处理信息的能力大幅提高,继电保护系统呈现计算机化的发展趋势。
2.智能化发展趋势。近年来,自适应理论、人工神经网络、专家控制法、模糊逻辑算法、蚁群算法等诸多智能算法被应用于继电保护系统中,使电力系统继电保护达到了更高的标准。综合运用各类智能化算法,有利于将继电保护系统中各类不确定因素的消极影响降到最低,从而更好地维护继电保护装置的可靠性。
3.网络化发展趋势。电力系统若想实现信息及数据的资源共享,就必须实现继电保护系统的网络化。当今时代,诸多变电站已然实现来继电保护系统的网络化,电力系统能够共享继电保护装置提供的故障信息及数据,根据故障信息来确定继电保护举措,从而实现对电力系统运行安全的维护。当前电力系统继电保护的网络化尚未全面实现,仍需要继续探索与实践。
4.一体化发展趋势。众所周知,电力系统中对继电保护装置及继电保护技术的应用,为的是实现如下两个目标:一是当电力系统出现系统故障时,通过继电保护实现对整个系统及设备的维护;二是当电力系统处于正常的运行状态时,发挥继电保护系统的数据测量、控制、保护及通信等多项功能。由此可见,现代化电力系统应实现继电保护方面的一体化。
综上所述,电力行业中已然形成了较为完备的电力系统,继电保护装置是电力系统中的重要组成部分,完备的继电保护技术为电力系统的安全运营提供了技术保障。现阶段,为了适应人们在电力行业领域的高质量、高要求,电力企业有必要提升自身综合实力,而适应继电保护技术的发展趋势,发挥继电保护系统的最大效能不失为一种有效的途径。
二、如何在电力系统中更好地应用继电保护技术
为了最大发挥继电保护装置及其技术在电力系统中的效能,应从以下几层面加以完善:
1.选用符合要求的继电保护装置。主要有四项要求:一是当电力系统发生故障时,继电保护装置需能有选择性地将故障段隔离,从而保障电力系统其他环节的正常运行;二是继电保护装置具有良好的灵敏性,能对电力系统保护范围内的不良运行状态及故障做出及时反映,三是继电保护装置可以快速地隔离故障,将系统故障的不良影响降低到最低;四是继电保护装置能够安全可靠运行。
2.关注影响继电保护可靠性的因素。一般而言,电力系统故障发生迅速,影响范围广,损失巨大,继电保护是维护电力系统正常运行的有效途径,关注影响继电保护可靠性的因素,能够更好地发挥继电保护的功用。主要有如下四个因素:一是系统软件因素,继电保护装置常常因为软件出错而出现拒动或误动现象;二是硬件装置因素,电力系统中存在诸多硬件装置,这些装置的质量和运行情况直接关系到继电保护的可靠性;三是人为因素,继电保护能否可靠运行很大程度上受人为因素的影响,如安装人员未按设计要求接线和检修人员误操作都能够造成继电保护效能的缺失。
3.遵守继电保护装置运行维护要求。为了维护电力系统中继电保护装置的正常运行,相关人员应严格遵守继电保护装置的运行维护要求,具体表现为如下几方面:一是熟知继电保护系统运行规程,严格依照过程进行操作,定期巡视和检测继电保护装置和二次回路,并依据相关规定来设置定值;二是监测继电保护系统内的电压、负荷电流及负荷曲线,使其保持在规定的范围内;三是如果继电保护装置存在误动情形,则应及时汇报给继电保护部门和调度部门,申请停用继电保护装置,在紧急情形下可采用“先停用,再汇报”的处理方法;如果存在继电保护装置与二次回路运行异常的情况,操作人员在记录后上报给相关部门,并督促这些部门进行及时处理。
4.日常继电保护操作应注意的事项。继电保护技术应用也有严格的技术标准,相关人员在做电力系统继电保护日常操作应注意到如下事项:一是遵循配电装置技术要求,二是做好配电屏的巡检工作;三是做好配电装置的运行与维护工作。如断路器因故障而跳闸后,检修人员或更换触头与灭弧罩,或进行检修,唯有在查明跳闸原因并消除跳闸故障后方能再次做合闸操作。
5.在原则规范下实施状态检修工作。状态检修是电力系统进行继电保护的必要工作,需要在以下原则的规范下展开:一是保证设备安全运行原则,这是继电保护系统运行需要遵循的首要原则,为了更好地贯彻这一原则,应强化对继电保护系统的状态监测、数据分析、定期检修和规范管理;二是总体规划、分步实施的原则,继电保护装置状态检修是一项极为复杂的工作,需要有长远目标和总体构想,并在此基础上做分步实施和逐步推进,从而在制度、资源、技术、管理等诸多方面奠定有益基础,并根据装置状态检修的现实情况作适当调整。
三、结语
继电保护系统发展现状篇6
【关键词】电力系统 继电保护技术 应用现状
进入21世纪以来,我国社会经济呈现了突飞猛进的发展势态。在这一势态下,电力业也快速地发展起来[1]。基于电力系统中,继电保护技术起到了关键性的作用,合理、科学地应用该项技术,能够使电力系统在运行方面的稳定性及安全性得到有效提升,提升整体电力系统的经济效益。为了使电力系统继电保护技术能够更加具有应用价值,本课题在分析其现状的基础上,对其在应用方面的不足及对策进行探究便具有较为深远的意义。
1 电力系统继电保护技术应用现状分析
1.1设备选型方面
以电力系统的具体需求为依据进一步完成设备选型,是电力系统继电保护技术应用的前提条件。对于电力系统的继电保护装置来说,需要将自身的功能充分发挥出来,还需要完成相应的工作任务。以继电保护装置为基础上,从而实现对系统运行状况的监测,进一步使电力系统所存在的潜在故障得到有效排除。现状下,在继电保护中,网络监控系统得到了较为广泛的应用。网络监控系统的应用还能够与继电保护充分融合,进一步使电力系统实现自动化监控与网络化监控[2]。结合前面叙述,遏止电力系统继电保护装置在应用过程中,需做好设备选型,并且设备选型需结合电力系统继电保护装置的功能及需求,选择合理的型号,从而使继电保护装置的功能有效展现出来,进一步使电力系统实现既安全又稳定的运行。
1.2电力系统继电保护功能应用
电力系统继电保护装置具备多方面的功能,比如主变保护功能、电容器保护功能以及线路保护功能等。通过对继电保护装置上述功能的充分利用,使电力系统输变电当中的变电站设备得到充分有效的保护,进一步使由于变电站故障而引发的经济损失得到有效避免。继电保护装置在电流保护方面使用了二段式或者三段式,这样使由于短路而造成设备损坏的状况得到有效避免。与此同时,在母联保护以及主变保护功能的应用下,使得设备损坏等故障的发生大大降低。
1.3继电保护技术融合了多项现代化技术
现状下,电力系统继电保护技术融入了多项现代化技术,包括计算机网络技术及自动化技术等。这些技术的融入使得电力系统继电保护技术更加完善,从而使该项技术的网络化特点与智能化特点充分展现出来[3]。比如在单片机技术的融入下,使继电保护装置的正确动作率得到有效提高。另外,在对网络通信功能模块加以利用的基础上,使中心监控人员的监控力度得到有效强化,同时还提高了故障信息的收集能力。显然,计算机网络技术与自动化技术的融合提升了继电保护技术在电力系统中的应用价值,因此在这方面需给予足够的重视。
2 电力系统继电保护技术在应用过程中存在的问题及对策探究
2.1相关问题分析
在应用电力系统继电保护技术过程中,倘若因设备出现故障,那么电力系统继电保护技术便能够发挥作用,快速地排除存在故障的元件,从而保证其他元件能够正常工作。电力系统继电保护的工作状态有两种,一种是工作,另一种是闲置。在系统元件发生故障的情况下,系统才会被激动,然后处于工作的状态。倘若没有元件故障发生,那么保护系统便处于闲置的状态。然而,保护系统还会受到诸多因素的干扰,从而引发一系列安全隐患,具体表现如下:(1)由于系统中应用了不合格的元件产品,进一步引发安全隐患。(2)系统在运行过程中,受到一些不利环境因素的影响,比如有害气体以及灰尘的介入,从而加快了设备的老化,进而间接性地导致继电保护设备受到损害[4]。(3)不同型号的系统有不同的保护方法,由于系统保护方法不具规范性与科学性,进一步引发系统故障。
2.2相关解决对策分析
针对上述问题的出现,便需要采取有效的解决措施,这样才能够保证电力系统继电保护技术能够得到充分有效的应用。具体对策有:(1)做好电力系统的管理工作。要想使电力系统得到有效保障,做好管理方面的强化工作便显得极为重要,一方面需要提高管理意识,另一方面需要对管理理念进行完善,降低或排除由人为因素而引发的损失等。(2)努力提升工作人员综合素质。在日常工作中,由于工作人员对工作的积极性不高,通常会导致工作环境较差,从而出现大量的有害气体及灰尘影响系统的运行。针对这些问题,便需要提升工作人员思想认识,通过知识培训、技能培训及业务培训等使工作人员综合素质得到有效提升。(3)使保护设备实现微机化,做好保护技术改革工作,完善相关制定,使继电保护更具标准化、更具专业化。
3 结语
通过本课题的探究,认识到在继电保护技术的应用下,使得电力系统在运行过程中的稳定性及安全性得到有效增强,对系统故障的排除具有时效性的作用。与此同时,由于系统在运行过程中会受到诸多因素的影响,比如不利的环境因素、系统设备故障因素等,这些因素的存在会导致电力系统继电保护受到不同程度的损害,因此便需要做好各项管理工作,提升员工综合素质。除此之外,笔者认为还需要认清继电保护技术的未来发展趋势,尽快朝向信息化与网络化方向发展,进一步为电力系统的稳定运行及安全运行奠定良机。
参考文献:
[1]季利明.浅谈电力系统继电保护的意义现状及前景[J].科技致富向导,2011,05:342-343.
[2]沈旭晓.刘雷.蔡伟民.电力系统继电保护技术的应用现状及发展趋势研究[J].机电信息,2013,24:176-177.
[3]沙骏.电力系统继电保护技术应用的探讨[J].中国新技术新产品,2011,22:148-150.
[4]高歌.窦龙超.浅谈电力系统继电保护的意义、现状及前景[J].科学中国人,2014,22:102-104.
继电保护系统发展现状篇7
关键词 继电保护;状态检修;保护检验
中图分类号TM7 文献标识码A 文章编号 1674-6708(2011)46-0035-01
近年来,随着计算机和通信技术的迅猛发展,不论在原理上还是技术上,电力系统继电保护都发生了巨大变化。安全性和可靠性是继电保护及自动化装置的一个至关重要的因素,继电保护系统随着电力系统的不断发展,容量越不断急剧增大。随着电力的发展和创新,电网的结构突出了两个最为重要的特性―复杂性和广泛性,其分布范围和复杂程度与日俱增,维护的工作量和成本当然会呈直线上升态势。另外,随着二次设备数量的大幅度增加,继电保护动作的安全性和可靠性就显得尤为重要,对继电保护安全性能检修措施的研究与探讨就很有必要,能够极大程度上解决当务之急。继电保护的地位在电力系统中日益重要,很多负面效应也随之产生,如:检修管理人员的工作量不断加大,设备的频繁检修缩短了设备寿命,降低了经济效益等等,因此继电保护的检修策略及措施的重要性就表现得比较充分。
1继电保护性能检修适用范围及装置的状态识别
继电保护的状态检修的实施取决于对设备状态的正确评价,依赖于现场设备运行数据的实时搜集、处理,因此,装置本身必须具备自检、上送、通信的功能,其使用范围也就只能是智能型的保护装置,单纯依靠人力进行数据收集、整理是不可能完成的和不现实的。所以,继电保护状态检修的适用于智能性的保护装置,如微机型继电保护装置,而不适用于电磁型、晶体管型等非微机型保护装置。继电保护装置在电力系统中的状态通常都是静止的,一旦电力系统发生故障或异常时,继电保护装置才会根据检测到的系统故障的电器参数而启动,然后通过自身的逻辑回路加以识别,灵敏可靠并有选择性地将故障快速切除或给出相应的预警启示。继电保护装置状态在人们的印象和了解范畴内往往是以静止状态所呈现的,当然,电力系统无不存在故障或异常时,保护装置也就不会产生保护动作和预警。因此,在电力系统中,继电保护装置在电力系统发生故障时,是否能准确快速地产生动作,发挥预警机制,这才是我们最需要的,也是继电保护性能检测的关键之处。只有在以下3种情况下才能充分发挥继电保护装置的动态特性:设备故障保护动作――继电保护装置试验和传动――保护装置误动。因为继电保护装置是一个静态的系统,所以如果我们想分析研究继电保护装置的特性,就必须要把握住其逻辑功能从而产生一些试验测试,即保护检验。我们通过模拟继电保护装置在电力事故和异常情况下所感受到的参数,使继电保护装置启动,检查继电保护装置应具有的逻辑功能和动作特性,从而了解和掌握继电保护装置状况。这些试验检测对继电保护装置的校验是非常有必要开展的,意义也非常明显,同时,它也需要定期进行检验、测试。
2保证继电保护性能检修安全性同步提高的相关措施
继电保护系统可靠性贯穿于设计、选型、制造、运行维护、整定计算和调试的整个过程,而继电保护装置的安全性和合理性的设计则是决定继电保护系统可靠性的一个重要标志,发挥着不可替代的作用。由于继电保护装置的投入运营,受到各方面因素的多层影响,所以谈其绝对可靠,那是不可能的,但是我们可以通过制定相应的各种规定和防范事故方案,采取相应的有效预防措施,从而消除隐患,在这样的情况下,继电保护系统的安全性还是可以达到理想目标的。我们可以从以下几个方面系统地提高继电保护系统检修安全性的措施:1)在保护装置制造过程中,务必要把好质量关,提高整体质量水平。我们可以通过杜绝不合格的劣质元件混入,从而保证高质量的元器件;2)晶体管保护装置设计中应着重考虑其所安装的空间务必要在与高压室隔离,从而免遭高压强电流、断路故障以及切合闸操作电弧的影响。我们还要防止晶体管受到环境中污染物的损害,一般需安装空调;机电型继电器外壳与底座间也要加胶垫密封,做到抵制灰尘和有害气体侵入;3)电力系统动态稳定性方面需重点考虑;继电保护系统需要具备快速切除故障的能力,因此输电线路或设备的主保护重要采用多重化设施,两套主保护并列运行。为了使保护装置在发生故障时有选择性动作,保护装置的设计和整定计算等方面应考虑周全,选择合理的元器件相互配合才能提高保护装置动作的可靠性。
3结论
随着电力系统的飞速发展,继电保护体系也得到了广阔的发展空间,开辟出了一条独特有保障的新道路。国家电网随着社会发展,其安全性和可靠性也广受人民关注,也是与居民生活息息相关的一项坚实而不可动摇的保障线。伴随经济发展和电力系统强大压力下的要求和责任也将会一直推动继电保护状态检修领域的持续进步和探索发展。继电保护的状态检修涉及到管理工作成为电力系统工作的重中之重,其作用发挥承上启下,是连接电力系统正常运作与人民生活和谐运转的枢纽。继电保护装置不论从设计、选型、安装,还是调试、验收、检修等各个环节,我们都需要产生整体观念,加强和保证此体系的全过程管理,特别是在设备初始状态方面要把好关。与此同时,状态检修还需要有先进的检测手段和高水平的综合判定能力作依靠,我们需要在不断的发展创新过程中,踏实上进,以国家科技的崛起为支点,着力掌握核心技术,从而真正把握设备的状态,制定出科学合理的检修策略,这样才能坚定不移地为继电保护系统的安全稳定运行提供指导性方针和发展性策略。
参考文献
[1]李银红,王星华,骆新,段献忠,柳焕章,刘天斌.电力系统继电保护整定计算软件的研究[J].继电器,2001(12).
[2]张锋,李银红,段献忠.电力系统继电保护整定计算中运行方式的组合问题[J].继电器,2002(7).
[3]曾耿晖,李银红,段献忠. 电力系统继电保护定值的在线校核[J].继电器,2002(1).
[4]柳焕章.阻抗保护分析中电压平面与阻抗平面的变换[J].中国电机工程学报,2004(1).
[5]李银红,石东源,段献忠,柳焕章.继电保护计算机整定的断点计算方法的改进[J].华中理工大学学报,1999(7) .
继电保护系统发展现状篇8
关键词:电力系统;继电保护;发展趋势
中图分类号:F407文献标识码: A
引言
电力工业作为国家最重要的能源工业,一直处于优先发展的地位,电力企业的发展也是令人瞩目的。随着我国社会、经济的快速发展和全国联网战略的实施,电网将处于一个更加快速发展的机遇期,而继电保护作为电力系统的安全卫士,必须同时把它的发展战略提到一个新的高度,以确保电力系统的安全、稳定运行和国民经济的长期、快速、稳步增长。
1、继电保护的概念及类型
1.1、继电保护的基本概念
继电保护装置作为一种自动装置,其通过监测、测量、控制和保护一次系统,从而对不正常运行或是发生故障的电气元件进行反应,通过发出信号来使断路器发生跳闸动作,从而确保将故障及时切除,具有自动、迅速和有选择性切除故障元件的特点,同时对于不正常运行的电气元件,还可以通过运行维护数据的分析,从而发出信号,做出减负荷或是跳闸动作。
1.2、继电保护的类型
在电力系统中,一旦出现短路故障,就会产生电流急剧增大,电压急剧下降,电压与电流之间的相位角发生变化。以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置。
2、电力系统中的继电保护技术分析
2.1、继电保护装置组成
根据继电保护装置的作用设定,其组成一般包括测量部分(与定值调整部分)、逻辑部分及执行部分。
2.2、继电保护技术基本要求
继电保护装置的作用决定了其技术措施须满足动作选择性、动作速动性、动作灵敏性、动作可靠性等要求。这四点要求间联系紧密,存在着对立统一的关系。
(1)动作选择性
一旦发生故障,应首先由设备或者线路自身的保护装置切除故障。只有在该保护拒动时,才可以让相邻设备或线路保护装置切除。另外要遵照逐级配合原则,保证不同级电网发生故障时选择性加以切除。在故障部分被成功切除后,未发生故障部分应继续供电。
(2)动作速动性
一旦发生短路故障,保护装置应当尽快予以切除,以便提高电力系统的稳定性,缩小故障的波及范围,避免故障设备或线路进一步遭受损坏,并提高备用设备及自动重合闸自动投入的表现效果。
(3)动作灵敏性
一旦电力设备或输电线路在保护范围内出血金属性短路,继电保护装置应当具备符合规程的敏感系数。这一要求通过设定并校验继电保护装置的整定值来实现。
(4)动作可靠性
继电保护装置做出的保护动作应当精准可靠。正常运行时,应当做到可靠不动作。电力系统中的任何设备都不能在无保护状态下运行。可靠性也是对继电保护装置最根本的性能要求。
3、电力系统继电保护技术应用
继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:当电力系统运行正常时,对系统中的各种设备的实际运行状况进行系统、全面和安全的监视,从而为系统管理人员提供全面、可靠的运行依据:供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行:当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。
继电保护装置应用过程的基本要求。第一,选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除,首先断开距离故障点最近的断路器,以保证系统中其他非故障部分能继续正常运行。第二,灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。第三,速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。
4、继电保护技术发展历程及趋势
4.1、发展历程及现状
继电保护技术是为了适应电力系统的发展而产生并逐渐发展的。而计算机技术、微电子技术、网络通信技术的迅猛发展不断地为继电保护技术注入了新鲜发展活力。在1928年出现电子器件保护装置后,从二十世纪五十年代开始,机电保护技术开始了日新月异的发展,从最初的机电式时展到六十至八十年代的晶体管式时代,八十年代中叶到九十年代进一步跃进集成电路式时代,而后又在新世纪发展为微机式时代。目前,我国新建的变电站、发电厂及高压超高压输电线路等都已实现了大规模集成化数字式继电保护。
4.2、发展趋势
目前,智能化与网络化技术在继电保护技术中得到了广泛的研究利用,促进继电保护技术呈现出网络化、计算机化、智能化、一体化的发展方向。随着微型计算机与微处理器的广泛普及,数字式时代已崭露端倪。
(1)计算机化。当代迅猛发展的计算机技术使得计算机在存储、运算、通讯等方面的性能都在不断提升,为继电保护技术实现计算机化奠定了技术。计算机化是继电保护装置必然的发展趋势,不但要求硬件微机化,更强调继电保护系统的信号数字化与功能软件化,大力提高继电保护性能的速动、灵敏与可靠,以争取电力系统更大的综合效益。
(2)网络化。从五十年代开始,通信技术逐渐与计算机技术相互结合研究并逐步融入合为计算机网络技术。这一技术作为信息数据通信工具,通过与继电保护结合实现了电力系统的安全稳定运行,已经发展成
继电保护系统发展现状范文
本文2023-12-14 11:27:09发表“文库百科”栏目。
本文链接:https://www.wenkubao.com/article/4492.html