化学工程与技术学科评估范文

栏目:文库百科作者:文库宝发布:2023-11-13 17:36:27浏览:1106

化学工程与技术学科评估

化学工程与技术学科评估篇1

[关键词]化学工程与工艺;人才培养模式;研究与实践

作为支撑“化学工程与技术”一级学科的本科专业,化学工程与工艺专业涵盖了化学、化工相关的诸多领域。进入21世纪,国际经济、社会和科技的发展对化学工程与工艺专业人才培养提出了新的要求,化学工程与工艺专业教育面临新的挑战。因而,在新形势下,以就业为导向构建化学工程与工艺专业人才培养模式,赋予化学工程与工艺专业教育新的内涵,培养创新能力和实践能力突出的综合型高素质人才成为化学工程与工艺专业教育新的课题。“人才培养模式”是指在一定的现代教育理论、教育思想指导下,按照特定的培养目标和人才规格,以相对稳定的课程体系和教学内容,管理制度和评估方式,实施人才教育的过程的总和。[1-4]本文将围绕“人才培养模式”的内涵,对新形势下高校化学工程与工艺专业人才培养模式的研究与实践进行分析和论述。

一、化学工程与工艺专业培养目标和人才规格的确定

人才培养目标和人才规格是构建人才培养模式的核心依据,是高等院校人才培养质量的关键,也是办学定位的基础。人才培养目标是指高等院校通过人才培养活动,使受教育者达到的知识、能力和素质结构的预期设定,它界定了人才培养的方向问题,综合反映了学校对培养人才的总期望和要求,是高等教育质的规定性。人才培养规格是培养目标的具体化,界定了高等院校人才培养的质量问题。[5-7]进入21世纪,化学工程与工艺专业教育面临新的挑战。一方面,化学、化工技术的发展层次更为深入,化学工程与工艺专业内涵更为丰富,化学工程与工艺专业高等教育必须注重培养适应社会需求的创新能力和实践能力突出的精英人才。另一方面,化学工程与工艺专业与其他学科交叉更为深入,其作为通用工程基础专业的特征愈发突出。专业外延的扩大导致专业界线更加淡化,进一步引起就业形势和就业观念的深刻变化,化学工程与工艺专业毕业生越来越广泛地参与各类技术工作。这就对专业人才培养的多层次和多样化提出了高要求。同时,经济全球化趋势日益明显,世界经济飞速发展,化学工程与工艺专业高等教育必须主动适应国际经济、社会的发展,培养既懂技术、管理又了解国际市场运转规律的复合型国际化人才。因而,化学工程与工艺专业培养目标和人才规格应该定位于,掌握化学工程与工艺专业基础知识及相关交叉学科知识;掌握扎实的工程技术基础知识;掌握宽厚的数学与自然科学基础知识;掌握至少一门外语知识;掌握国际行业规则;掌握必备的科学思维方法与工具性知识;掌握较丰富的经济、管理、营销、社会、法律、环境、人文等社会科学知识。具备综合运用知识分析问题、解决问题的能力;具备运用科研创新思维进行技术创新和产品开发的能力;具备有效的进行沟通和社会交往的能力;具备进行组织、管理、营销的能力;具备运用外语进行跨国交流与服务的能力;具备运用化工商贸知识进行谈判的能力;具备终身学习与提高的能力;具备运用计算机及信息技术的能力。具有良好的思想道德素质、健全的人格品质和优良的心理素质;具有良好的文化素养和文化艺术修养;具有良好的社会责任意识、团队协作意识;具有广阔国际视野和全球意识。培养能够在化工、轻工、医药、炼油、冶金、能源、环保等部门从事工程设计、技术开发、生产技术管理、科学研究和产品销售等方面工作的复合型高素质人才。

二、化学工程与工艺专业课程体系和教学内容的构建

(一)课程体系和教学内容构建的指导原则

课程体系是课程目标在课程内容上的要求和反映,它属于课程结构中以内容为维度的结构,是构建人才培养模式的核心,是实现人才培养目标和人才规格的总纲领,是组织教学过程、安排教学任务的主要依据。[8-9]为了满足国内国际经济、社会发展对人才的需要,化学工程与工艺专业课程体系和教学内容的构建应该围绕如下原则进行。

1.厚基础、宽口径构建“平台教育”课程体系

随着世界科技的发展,化学工程与工艺学科领域与其他学科的交叉、渗透、融合进一步深入,其所涉及的领域不断扩大,专业人才需求市场也发生了较大变化,专业人才需要适应较宽的知识领域的要求。因而,化学工程与工艺专业人才培养必须以化学、化工技术学科以及现代高新技术产业相关交叉学科的需求为前提,本着加强化学工程与工艺专业基础教育,完善自然科学基础、人文社会科学基础,构建化学工程与工艺专业平台教育体系,采取厚基础、宽口径方式开展学科交叉与综合背景下的平台专业教育和个性化人才培养。[10]化学工程与工艺专业在构建课程体系和教学内容时,应该以基础化学、化工为支撑,把新技术、新学科融入专业学科教育范畴,按照课程内容的内在联系,从“科学意识、科学知识、学科前沿与交叉”三个层次设立高度融合的具有基础平台教育性质的核心课程。[10]坚持厚基础、宽口径专业教育思想,设置具有科学知识特性的多门类“模块化”选修课程和培养道德素质、政治素质和人文素质的素质教育课程,根据学生的兴趣和发展潜能来培养人才,为学生个性化自主学习提供多项选择,拓展和完善学生的智能结构,以满足“厚基础、宽口径平台教育”与“个性发展”要求。

2.坚持用工程教育理念构建课程体系,培养学生工程意识和工程实践能力

高等教育的根本任务是培养具有创新精神和实践能力的高级专门人才。化学工程与工艺专业作为工科基础性专业,需着力培养应用型工程技术人才,而工程实践能力培养是专业教育的重要内容。化学工程与工艺专业教育应该结合经济社会发展对高级工程技术人才的需求,以工程教育理念为核心,整合优化课程体系和教学内容,加强学生工程意识与实践能力培养。为了加强学生工程实践能力的培养,在化学工程与工艺专业课程体系和教学内容的构建中,应该改变过去强调工程科学理论知识,弱化工程实践能力训练,强调专业知识的传授,弱化综合素质与能力培养的普遍问题,本着理论与实践相结合的原则,密切教学与科学研究、社会实践的关系,加强实验课、课程设计、各类实习、毕业论文(设计)、社会实践等实践技能训练,增强学生分析和解决实际问题的能力。此外,实践教育课程是工程意识和工程实践能力培养的综合性教学环节,是学生工程素质教育课程体系中重要的组成部分。在化学工程与工艺专业课程体系和教学内容的构建中,在加强基础理论教育,拓宽专业内涵,突出综合能力和创新能力,面向应用,体现素质培养和个性化教育理念的基础上,结合工程实际,强化实践能力培养,构建和完善“以实验及工艺基本操作技能训练为基础,以设计为主线,以提高学生的工程实践能力和学习能力为目标的递进式实践教学体系”。

3.以国际化视野构建课程体系,培养外向型、复合型国际化人才

随着世界经济全球化、一体化,知识信息化,必然要求高校人才培养国际化。化学工程与工艺专业也必须要培养掌握化学工程与工艺专业基础知识,具备一定外语水平,熟悉国际行业规则,能够进行跨国交流与服务,具有广阔国际视野和全球意识的外向型、复合型专业人才。教学内容的国际化是高校人才培养国际化的关键。教学内容要国际化就必须将国内外先进的知识体系融入教学内容,以外语或双语进行教学,构建双语课程群,将外语教学与应用贯穿于整个教学过程当中。另外,在教学中以实用性和国际化为标准,以课程为单位引进经典原版外文教材及相应资料开展教学也是专业人才培养国际化的有效途径。此外,专业人才培养国际化还必须要求在基础外语教学中注重培养学生跨文化交流沟通能力,以及在传统课程设置中增加国际知识、跨文化交流课程,让学生熟悉多元文化,通晓国际规则,培养学生的国际修养与国际思维能力。

(二)化学工程与工艺专业课程体系和教学内容的构建

1.通用课程模块

通用课程模块是学生进一步学习专门知识的基础,是保障厚基础、宽口径构建平台教育的关键。该模块包括人文社科基础、政治理论基础、身体素质课程基础、自然科学基础、化工基础、计算机基础、经济管理基础等课程门类。在构建通用模块时必须按照模块化思维,对各门类课程内容进行统筹整合。比如,无机化学、有机化学、分析化学和结构化学中重复的内容就必须进行删减,物理化学中与化工热力学及化学反应工程相关的内容要进行整合,重新调整各门课程内容,科学合理分配学时、学分,以构建新的基础课程体系。

2.专业课程模块

专业课程模块是根据化学工程与工艺专业培养目标而开设的专业知识和专门技能课程模块,主要训练学生的工程思维,培养学生探索工程知识、解决工程问题的能力。专业课程模块构建时,要注重设置跨学科门类的多学科交叉融合的课程。如化工专业课程与专业外语融合,化工设计与计算机程序设计、软件运用融合,化工过程分析与开发和化工技术经济学融合,化工产品开发与环境保护融合,文献检索、科技写作与科训、毕业论文融合等。学生通过跨学科门类的多学科交叉融合的课程的学习,提高全面素质,实现从专业型人才向复合型人才转变。

3.综合能力模块

综合能力模块主要为多门类选修课程。该模块为学生个性化自主学习提供选择空间,通过对该模块课程的学习,学生获得跨学科的综合知识背景,培养了学生的创造性思维、批判性思维、自学能力和人际交往技能、技术交流能力等,满足了“平台教育”基础上的“个性化发展”要求。该模块课程设置中,应该根据学生个性发展及市场需求尽可能多的设置课程门类。除了设置专业相关边缘课程、外延课程、文化素质拓展课程、涉及综合道德伦理法律常识的社会课程外,尤其还要增设化工管理、化工经济、化工商贸等课程及诸如商务英语、科技英语、学术交流英语、外国企业文化等外语或双语课程。

4.实践环节模块

实践环节模块是教学内容和课程体系的重要组成部分,是培养学生工程意识与实践能力的核心环节。该模块包括实验课、课程设计、各类实习、毕业论文(设计)、社会实践等实践训练内容。在实践环节模块构建中,为了满足学生工程意识和实践能力培养要求,实验课程应该从验证性实验到设计性实验转变,从单科性实验向综合性实验转变,从认识性、继承性实验到研究性、创新性实验转变。课程设计教学中,整合化工原理课程设计、化学反应工程课程设计、化工设备机械基础课程设计、化工工艺课程设计等课程内容,构架综合性大设计课程,并要求设计过程中充分运用计算机软件进行设计。设计选题应紧扣学科前沿和工程实际,并鼓励学生采用不同工艺进行设计。实习教学是化学工程与工艺专业最为重要的实践教学内容之一,是培养学生工程实践能力的重要环节。实习教学应该和工业实际紧密结合,并采取多样化的实习教学方式。毕业论文(设计)是对学生基础理论知识的掌握及运用其发现问题、分析问题和解决问题能力的综合检验,是培养学生创新能力的重要环节。毕业论文(设计)选题应该具备前沿性和创新性,面向工程实际,和教师科研或学术课题相结合,采取项目式教学进行毕业论文设计。

三、化学工程与工艺专业管理制度和评估方式的构建

构建一套与化学工程与工艺专业人才培养模式相适应的教学管理制度是化学工程与工艺专业人才培养模式构建的重要环节之一。教学管理制度的构建中,必须要保证课程体系中每门课程都按照制订的教学大纲规范授课,并定期不定期对教师教学质量进行监督,构建由多种评价方式、评价主体和评价内容相互结合的多元化的评价体系,针对不同课程、不同教学环节,采取课堂教学质量评价、考试评价、实践教学评价、毕业论文质量评价等方式对教学效果进行评价。另外,教学运行管理中要特别注重丰富和发展学分制,为个性化教育提供更为广阔的空间。此外,教学管理制度构建时,还必须创新学习指导制度,建立学业导师制,全方位多角度地为学生整个学业生涯提供指导。同时,还要完善专业培养目标与学生就业及工作能力跟踪管理,既重视学生在学校期间的考核评估,也重视其在社会实践过程中的考核评估,并根据社会对专业人才培养质量的反馈,指导并不断完善教学计划制订、教学活动实施、教学运行管理、教学质量监控保障等各个环节的管理,建立和完善化学工程与工艺专业管理制度和评估方式。

四、结语及展望

人才培养模式的构建是高校培养高素质人才的关键,随着国内、国际人才需求的不断变化,高校化学工程与工艺专业也必须不断探索、完善人才培养模式,使之更好的满足新形势下人才培养的需要。

[注释]

[1]翟安英,石防震,成建平.对高等教育创新型人才培养及模式的再思考[J].盐城工学院学报(社会科学版),2008(2):64-68.

[2]董泽芳.高校人才培养模式的概念界定与要素解析[J].大学教育科学,2012(3):30-36.

[3]刘忠喜.人才培养模式概念、层次及构成要素[J].海南广播电视大学学报,2014(3):107-110.

[4]魏所康.培养模式论[M].南京:东南大学出版社,2004:1-5.

[5]蔡志奇,沈志滨.应用型本科人才培养规格的定位与实现[J].药学教育,2014(4):1-4.

[6]王进鑫.适应知识经济挑战变革高校人才培养规格[J].中国高教研究,2001(3):71-72.

[7]于珍彦,于少珍,韩如成.应用型人才培养规格和培养模式探索[J].山西高等学校社会科学学报,2009(6):106-108.

[8]周立山,魏抗美.创新教育与素质教育[M].武汉:华中师范大学出版社,2002:151.

[9]陆勇,崔刚.卓越计划背景下的地方工科院校通识教育课程体系构建[J].扬州大学学报(高教研究版),2012(4):78-81.

[10]王艳,李洁,黄可龙.大类培养模式下化学基础课程体系的改革与建设[J].中国大学教学,2009(11):36-38.

化学工程与技术学科评估篇2

一、能源化学工程专业定位与课程体系

1.专业概况

沈阳工程学院于2010年申请试办能源化学工程专业,2011年开始招生。专业在创办与建设过程中,始终以社会需求为导向,主动适应国家和辽宁省经济社会发展,以及能源化工产业发展的需求,紧紧围绕辽宁省经济发展战略,重在培养和储备能源化学工程领域高素质应用型人才。能源化学工程专业涵盖煤化工、生物质化工、新型电源技术,以及节能环保和资源循环利用等新兴能源化工领域,突出能源和电力行业的清洁生产和高效利用。

2.制定人才培养目标

沈阳工程学院能源化学工程专业以培养适应社会主义现代化需要的德、智、体、美全面发展,掌握能源化学工程基础理论和技能,面向电力、供热、化工、环保、煤炭等能源转化领域,从事污染物控制和减排工艺的设计、运行及生产过程控制、相关产品研制与开发等工作,具有创新精神和能力的高级工程技术人才为目标。专业人才培养规格为应用型人才,即学生既要懂得能源化学工程等方面的基本理论和基本知识,又要接受能源化学工程实验技能、工程实践、计算机应用、科学研究与工程设计方法等方面的基本技术。

3.制定科学合理的课程体系

按照本科通识教育、学科基础教育、专业知识教育、专业技能教育等四个层面的要求,并结合实际情况,确立了能源化学工程专业本科人才培养体系总体框架。在总体培养体系框架的基础上,为了保证能源化学工程专业的培养目标,构建了本专业的培养体系。该培养体系由理论教学体系、实践教学体系、素质与创新教育体系三部分组成。理论教学体系由三部分组成,具有层次分明的特点,实现了系统优化。按知识层次构建了三个知识平台,即公共基础课、专业基础课和专业方向课,并按学科体系构建课程体系。应用型人才的培养,重在培养应用能力,在教学中全面落实能源化工方面知识,并在精选知识、交叉融合上下功夫,做好整体优化。体现宽口径、厚基础、重实践的培养理念和课程内容的合理整合与创新。课程安排可以概括为“1+1+1”,前一个“1”指化学,中间一个“1”指化学工程与技术,后一个“1”指能源环境保护和节能减排。沈阳工程学院能源化学工程培养方案充分体现这一要求,分别开设了四大化学课程,即“无机化学”“有机化学”“分析化学”“物理化学”;开设了化学工程学的核心课程,包括“化工原理”“化学反应工程”“化工热力学”“化工仪表及自动化”;开设了能源化学工程中与节能减排和能源环境保护相关的课程,包括“化工节能原理与技术”“洁净煤技术”“能源化工环保及治理”等课程。

二、建立科学的教学管理和质量保障体系

(1)构建合理的质量保障体系。建立了具有特色、适合专业建设和发展需要的内部教学质量保障体系,即“目标规划-过程控制-效果评价”,相应的子系统有“内部质量标准系统”“过程管理系统”及“质量评价系统”。

(2)构建人才培养过程管理系统。系统由“指挥、执行、控制”构成的覆盖全过程质量监控和持续改进闭环回路的六大过程管理子系统组成。设计了“三位一体”的工作任务清单,即程序文件、工作流程、控制节点,通过“三位一体”工作任务清单,进一步明确了各项工作的目的、职责、工作程序,确定各项工作的质量标准和要求,确定各项工作任务的关键环节,为规范管理提供了依据和参考。

(3)建立合理监控制度。以人才培养目标为依据,以教学运行全程监控为主线,以各教学环节和教学要素为对象,逐级负责,分工协作。制定了《听课制度》《停代调课制度》《课堂教学质量监控制度》《实践教学质量监控制度》等主要教学过程管理方法。对教师的教学准备、课堂讲授和作业批改,学生实验、实习、毕业设计指导等做了具体的规定。完善了教学信息的收集、分析、评估与反馈制度,提高对教学质量的调控能力;对教学过程的各个环节进行全方位的监控,坚持期初、期中、期末的教学检查制度,部门领导听课、教师互听课制度等;坚持开展课堂教学质量、实验教学水平、毕业设计质量、试卷质量等方面的评估工作,确保教学质量稳步提高。

三、深化教学改革

(1)积极开展教育教学改革。开展教育教学改革研究工作,注重规范教学环节,探索适应新形势下的教学内容与课程体系、教学方法与手段、课程考核形式等多方面的改革。对现代教学规律、教学方式和教学方法等进行研究。根据能源化学工程专业发展的最新情况,及时更新授课内容,选择合适的新教材,积极组织案例教学,采用多媒体授课,开展专题讨论课,进一步规范各教学环节,制订完备的课程(包括理论课、实验课、集中实践环节)教学大纲和课程建设规划及课程档案等。

(2)不断优化教学内容和课程体系。能源化学工程是一门涉及多学科知识的学科。面对新世纪科学技术的突飞猛进,知识信息日新月异,能源化工也在迅猛发展。对于能源化学工程专业的本科学生来说,四年中要学习的知识、理论和技能非常多。因此在教学内容上要突出如下几个方面:一是围绕能源化学工程人才培养目标和化工类院校能源化学工程专业特点,调整课程学时和课程内容,开办化工特色鲜明的能源化学工程专业。二是全面分析各门课程的基本知识、基本理论和基本技能的内容,避免重复部分,增加新知识、新理论和新技能,以形成完整的知识点—知识线—知识体系。对课程学时、教学内容进行适度安排,适当减少理论课,增加实践环节,鼓励学生动手实践。三是将国内外前沿和专业教师新的科研成果充实课程教学内容。如在能源化学课程中介绍新型生物质能源利用、可燃冰技术、煤气化和液化生产甲醇与二甲醚、燃料电池的开发与利用、燃料电池催化剂等化工新能源的内容;专业教师经常以科研课题为平台参与国内外多种学术会议,在课堂上将学科最新动态展示给学生。四是积极选用符合培养要求的高质量教材。

(3)丰富教学方法和考核手段。教学方法和手段改革的根本在于落实学生的主体地位,只有明确了学生的主体地位,才能调动学生学习的积极性、主动性,提高分析问题和解决问题的能力。因此在教学过程中,通过计算机多媒体的使用、具体案例或项目的解析、开展专题讨论课,增强了学生对理论问题的理解,以及对专业热点问题的分析判断能力,提高了学生的学习兴趣。通过改革,大部分课程都实现了考核方式多样化,采用平时成绩与期末成绩相结合的考评体系,避免了“一考定全局”的作法。

(4)积极申报科研和教改项目。能源化学工程专业长期以来坚持教育教学改革,不断提高教学质量,因而毕业生大多具有实践能力强、协作精神好等突出特点,毕业生在业内发展潜力巨大。能源化学工程专业教师继承了学校的办学传统,积极开展教学改革研究工作,注重教学环节的规范,积极探索适应新形势下的培养模式和教学方式、方法的改革。近3年来,专业教师共主持了2项部级科研项目,省市项目10项,总经费达200多万元,发表SCI和EI论文41篇。主持和参与9项教改项目,其中省级3项,校级6项。

四、能源化学工程专业建设中存在的问题

由于沈阳工程学院能源化学工程专业成立时间较短,因而在专业建设过程中还存在一些问题。

(1)专业实践教学条件有待改善。目前本专业实验条件还相对落后,缺少大型分析仪器和设备,实验室建设相对滞后,现有实验台数还不能很好满足学生分组实验要求。

(2)师资队伍建设还需进一步加强。由于专业办学历史较短,师资力量严重不足,专业结构不合理,化工专业教师短缺,青年教师还有待成长,中间力量相对薄弱,缺乏高水平科研项目和教学研究成果,难以带动专业建设向纵深发展。

(3)部分课程设置不尽合理,专业课开课先后顺序还需进一步完善和调整,有的授课教师对新课程内容不太熟练,有必要加强教师的授课水平。

(4)校外实习基地建设有待加强。现有实习基地以电厂为主,与能源化学工程专业背景有一定差距,学生实习目的性不强,需要进一步与校外企业进行联合,增强与能源化工方面企业的联系。目前,能源化学工程专业获批“辽宁省普通高等学校本科重点支持专业”,建设经费陆续到位,专业教师正在做好本专业实验室和实训基地的规划设计、合理布局和分析论证工作,结合应用型人才培养目标,在广泛开展调研的基础上,集众家之长,构建具有专业特色的实践教学基地。人才培养方面,以引进与培养相结合,积极引进适合本专业发展的高素质学科专业人才,加紧培养现有年轻教师,形成结构合理的学科专业人才梯队。强化青年教师培养制度,鼓励年轻教师攻读博士学位或进修深造;进一步加强兼职教师队伍建设,结合特色专业、特色课程和实验实训基地建设的实际需要,有计划、有针对性地构建一支相对稳定的高水平兼职教师队伍。能源化学工程专业建设是一个不断发展的过程,尤其是以电力行业为背景的院校,在开设该专业时还需进一步明确发展方向,不断吸收和借鉴其他相关院校的办学经验,不断摸索、改进、创新和完善专业建设,办出自身专业特色,培养出适应经济社会发展的高素质应用型本科专业人才。

化学工程与技术学科评估篇3

化学工程作为一门基础学科,长期以来是以实验为基础发展起来的,是一门理论与实验相结合的学科。随着计算机技术和信息技术的发展日新月异,化学工程的研究中又增加了计算与计算机模拟的方法,它已经逐渐成为化学工程中最富有生命力的研究方法。随着电子计算机在化学工程中的广泛应用,传统的化学工程学科已逐渐成为一门集实验、计算、理论于一体的综合性学科。

从20世纪50年代开始,科研工作者就利用计算机解算化工过程的数学模型,使研究方法出现了一个革新。经过几十年的发展,化工过程模拟已经成为普遍采用的常规手段,被广泛应用于化工过程的研究、开发、设计、生产操作的控制与优化、操作培训和技术改造之中。

一、流程模拟

化工过程流程模拟或流程模拟是根据化工过程的数据,诸如物料的压力、温度、流量、组成和有关的工艺操作条件、工艺规定、产品规格以及一定的设备参数,如蒸馏塔的板数、进料位置等,采用适当的模拟软件,将一个有许多个单元过程组成的化工流程用数学模拟描述,用计算机模拟实际生产过程,并在计算机上通过改变各种有效条件得到所需要的结果,其中包括最受关心的原材料消耗、公用工程消耗和产品、副产品的产量和质量等重要数据。

流程模拟就是在计算机上“再现”实际生产过程,由于这一“再现”过程不涉及实际装置的任何管线、设备以及能源的变动,因此给化工模拟人员最大的自由度,可以在计算机上任意进行不同方案和工艺条件的探讨、分析。流程模拟式计算机技术是化工方面的最重要应用之一。应用流程模拟系统不仅可以节省时间,也可节省大量资金和操作费用,提高产品质量和产量,降低消耗。流程模拟系统还可以对经济效益、过程优化、环境评价进行全面地分析和精确评估,并可以对化工过程的规划、研究和开发及技术可靠性做出分析,并快速准确地对多种流程方案进行分析和对比。

二、单元模拟

化工工业处理的过程是以质量、动量和能量的连续流动为特征,传统手段对这一过程的处理很大程度上是依靠经验以及一些宏观参数表达的经验关系式。现代流程模拟技术中,绝大部分单元过程仍被处理为“黑箱”模型,对流动、传质、热、反应比较敏感的单元过程的设计、放大,需要了解有关质量、动量、能量流更多微观和深入的信息,单元模拟技术就是为了解决这一问题而产生的。

在单元模拟过程中,单元内部的介质基本是多组分或多相的,传质、传热、反应过程相互耦合。单元模拟技术通过离散方法求解这一耦合体系,以获得空间和时间的速度分布、温度分布、压力分布、浓度分布、相分数分布等。单元模拟技术可以提供传统手段难以获得的大量信息,如单元过程内部所有参数的空间分布和动态变化,通过这些信息可以深入理解单元过程内部的机理,在发生异常时亦有助于分析原因。因此,它是一种低成本的调优手段,当结构形式或结构参数变化后,单元过程内部随工艺参数和操作参数而变化的过程,可以在计算机上很方便地进行试验,直接用于优化和改造手段,而且单元模拟的计算不是经验性的,比较可靠,目前单元模拟主要用于化工生产的工程放大、优化设计、诊断及扩能改造、生产调优及控制四个方面。

三、反应动力学模拟

化学反应动力学是一门研究各种因素对反应速率的影响规律和反应机理的科学,在根据实验结果和对反应机理研究的基础上建立了化学反应动力学方程,它们对反应器的设计、最优化条件的选择都是必不可少的理论基础。

目前所采用的物理化学教材对一系列对峙、平行、连续等复杂反应的动力学方程仅给出分离变量法或消元法等单一的数学处理方法,这种方法对于非常简单的复杂反应可以求出解析解,但大多数化学反应的反应机理非常复杂,由于从反应机理得到的微分方程组,非常不便求解,因此借助电子计算机用数值解法,可以方便地求解从反应机理得到的微分方程组。

计算机模拟在复杂化学反应动力学的计算中有着广泛的应用,通过计算机模拟计算得到的结果可以预知反应过程中各反应物质浓度的变化,通过对连续反应最佳时间的计算可以控制反应时间以得到所需要的物质的最大浓度,通过计算平行反应和对峙放热反应最佳温度,可以控制反应温度,优化反应条件,使生成产物的速率达到最大值,这些计算机模拟计算的数值可以为实际工业生产中工艺条件的控制以及反应器的设计提供重要的参考数据。

四、分子模拟

从分子水平来研究化工过程及产品的开发和设计,无疑是21 世纪化学工程的一个重要方向,计算机模拟研究已渐成为与实验研究及理论研究相平衡的认识自然规律的第三种重要方法。化工热力学数据对于化学工业过程的设计、操作以及优化具有重要的作用。热力学数据一般通过三个途径取得:即实验测定、理论总结及计算机分子模拟。通过计算机分子模拟,可以较为严格地从流体的微观相互作用出发,预测流体的宏观热力学性质。特别是在一些极端的条件(如高温、高压、剧毒)下,进行实验是很困难的,计算机模拟则较易实现,并且比较经济。采用计算机分子模拟方法,可以得到相当可靠的热力学体系的径向分布函数、宏观热力学性质以及输运性质,这为我们建立与改进各种描述实际现象的理论或模型提供可靠的依据。

化学是一门基础性学科,是以实验为基础发展起来的理论与实验相结合的学科,随着计算机技术在化学学科中的广泛应用,逐渐形成了应用计算机研究化学反应和物质变化的独立学科,它以计算机为技术手段,进行化学反应方面的数值计算,这就是计算化学。

计算化学是理论化学的重要分支,是利用电子计算机、通过数值计算解决化学问题的一门方法学。计算化学是一门新兴的、多学科交叉的边缘科学,它运用数学、统计学与计算机程序设计的方法,进行化学方面的理论计算、实验设计、数据与信息处理、分类、分析和预测。随着化学仪器对自动化要求越来越高,许多化学实验过程用人工进行控制相当困难,需要可靠的控制技术系统,因此计算机计算模拟技术从根本上改变了化学实验技术。

计算化学以数值计算为基础,用高级语言及其编程技术,解决化学中的数值计算问题,它将数学的计算方法通过计算机程序具体地应用于化学过程中,通常用来研究化学中一些常用的、共同的、较为常见的计算方法,是化学计算的核心。实验数据的内插、函数拟合、线性方程组求解、高阶方程组求解、解微分方程组、求本征值与本征向量等,它们均与化学中量子化学、分析化学、化学平衡、化学动力学和试验数据处理等密切相关。现代计算化学技术的发展,已经能够将各种化学性质与分子结构之间的关系定量地联系起来,化学因此正从实验科学迈向实验、计算、理论相结合的综合性学科,化学已经由多实验少计算,演变为先实验再计算,也必将逐步演变为先计算再实验。

目前计算化学在无机化学、分析化学、有机化学、物理化学、结构化学中都有广泛地运用,具体来说,计算化学要完成的任务主要有量子结构计算、分子从头计算、半经验计算和分子力学计算等量子化学和结构化学范畴,以及物理化学参数计算,包括反应焓、偶极距、振动频率、光谱熵、反应自由能、反应速率等理论计算,这些属于化学热力学、化学动力学及统计热力学范畴。在计算化学中,数值计算是最根本的任务,其目的是将已知参数通过适当的数学计算得到一个预期的结果,这个结果可以和实验结果相比较,也可以和前人的研究成果相比较,最终得出结论,用来指导化学实验的实施。

化学工程设计具体的任务涉及物料衡算、能量衡算、厂区布置图绘制、车间布置图绘制、设备装备图绘制、管道布置图绘制、带控制点工艺流程图绘制、设备选型及强度校核计算等许多工作,如此众多繁杂的工作,如能引入计算机辅助,将大大减轻化工设计工作的强度。

过去那种利用普通纸笔绘制化工图样、利用计算尺和计算器进行的各种计算将被计算机软件应用所取代。计算机辅助设计制图和普通制图相比不仅具有绘制精确、图面整洁等优点,而且还具有随意修改、重复利用、按需打印等普通手工绘制无法具备的特点,利用计算机辅助设计进行化工工程图绘制已经是21世纪的基本趋势。

计算机辅助设计(Computer Aided Design,CAD)是工程技术人员以计算机为工具,对产品和工程进行设计、绘图、造型、分析和编写技术文档等涉及活动的总称,用于计算机辅助设计的软件有很多,其中以AutoCAD(Auto Computer Aided Design)软件通用性最高,应用最为广泛。由于AutoCAD具有高速计算、数据处理、大容量存储和强大的绘图编辑功能,所以在化工设计领域得到了广泛的应用。它利用计算的方便、快速、精确、重复利用、人工智能等优点来帮助人们解决在设计过程中碰到的所有问题。

化学工程与技术学科评估篇4

校企联合培养模式将高校的教育科研优势与企业的工程实践优势结合起来,兼顾了化学工程专业硕士在基础知识水平及应用能力上的培养要求,并已在专业硕士培养中起到了突出作用。但不可否认的是,目前校企联合培养仍存在一些问题。

(一)校企合作形式与内容

校企合作形式是影响联合培养的最重要因素。重点大学及行业特色型大学由于其品牌和行业影响力而在校企合作培养研究生方面有显著的优势。以中国石油大学为例,该校立足于石油石化行业和领域,面向东营胜利油田和青岛近海油气田及两地相关产业开展人才培养,是国内化学工程专业硕士校企合作效果最好的高校之一。然而,国内大部分地方高校与企业之间的合作形式仍较为初级,特别是地方高校受到学校科研实力、学校办学层次和软硬件条件等因素的制约,校企之间的相互联系多建立在项目合作和个人感情联系的基础上,未形成长效机制。如果企业负责人离职或合作项目中断,则联合培养将大受影响甚至停滞。此外,部分地方企业创新意识不强或过分追求“短平快”的项目,都将影响人才持续培养机制,无法实现良性循环。从人才需求角度来看,地方经济状况的优劣也会明显影响企业的人才需求,进而直接影响校企合作的基础。

(二)导师

很多高校的校内导师过度倚重发表学术论文,或者一直从事基础理论研究,缺乏应用研究项目和研究经验。该类导师在指导专业学位研究生时往往延续过去的研究思路和方向,以学术型研究生模式培养专业学位研究生,最终导致毕业生与企业要求相差甚远。此外,很多校外导师是企业的高管或主要负责人,日常事务繁忙,对自己负责的学生疏于管理和指导。学生在企业或沦为廉价劳动力,或实践流于形式,达不到应有的效果。

(三)培养过程

国内各高校的化学工程专业硕士的主要管理和培养政策已经基本齐备,但仍有部分政策还在修改和制订过程中。很多高校在课程体系构建、考核方式、实践内容等方面没有将专业学位研究生与学术型研究生加以区别,未能体现出专业学位职业性、应用性的特点。与企业生产实际密切相关的课程开设不足也是目前国内高校化学工程专业硕士培养普遍存在的问题。

(四)生源

对于重点高校,无论是学术型硕士或专业学位硕士均呈现“供大于求”的局面,学校可以从容择优录取。而地方高校的专业学位认可度普遍较低,直接导致部分优秀生源流失,毕业生质量也因此受到影响。

(五)其他问题

部分地方高校在导师激励政策、学生奖励机制等方面不够完善,由此产生了导师因专业学位学生花费多、产出少而不愿意接受专业学位学生的情况;学生也因在奖学金等方面无法与学术型研究生竞争而影响了科研积极性。

二、方针与措施

鉴于以上问题,我们以山西大学与三维集团合作构建的“山西省催化技术研究生教育创新中心”为平台,通过深入探索山西煤化工转型对化学工程专业研究生教育的影响,从合作模式、导师管理、课程体系构建、健全和完善各项制度等方面进行改革,并力图构建一种符合山西省化工行业需求的化学工程专业学位研究生培养模式。

(一)校企合作平台的构建

构建校企合作平台是稳定专业学位硕士培养质量的根本措施。2002年,化学化工学院的研究生就因项目需要而在三维集团进行数月至一年的工业侧线实验。随着双方项目合作的深入,进入企业实践的学生人数不断增多,而企业的技术人员也积极参加山西大学的博士或在职工程硕士考试,双方实现了人才培养上的互动。在此基础上,2004年双方共建了“精细化工催化与反应工艺共建实验室”,实现了校企层面的科研平台构建。2007年底,经山西省经委、山西省教育厅、山西省产学研工程领导组批准,校企双方通过政府层面建立了“山西省催化技术研究生教育创新中心”。随着相关管理制度逐步完善,该中心不但成为研究生培养的创新实践平台,也逐渐成为高校和企业间的技术、人才交流平台,并为企业技术带头人的知识更新和产业技术升级提供了支撑。近年来,山西大学积极开展“煤基资源高值循环利用协同创新中心”的建设,拓展多方合作关系。目前研究生教育创新中心的企业平台已包括阳煤集团、潞安集团、河南煤业集团等大型煤化工企业,未来还将探索与中科院山西煤化所、中科院大连化物所、中科院过程所等研究所合作培养研究生的可能性。综上所述,山西大学化学工程领域的校企合作经历了如下发展历程:校企合作项目牵引建立校企层面的科研合作平台建立政府层面的研究生教育创新中心建立多方参与的校企科研教育合作平台。其中,多方平台的建立不但解决了科研项目延续性、科学性的问题,更有利于实现校企联合培养的长效性和持续性。

(二)管理体制创新

为进一步提高专业学位研究生教育水平,我们就专业学位研究生的管理体制方面开展了改革创新。研究生院成立了“专业学位管理办公室”,负责与专业学位相关的政策制订、学科建设、品牌建设,以及对各培养单位进行管理、督导和服务等工作。学院成立了相关的“专业学位教育中心”,负责相关专业学位研究生的招生、培养、师资队伍建设、实践基地建设等工作。化学化工学院以“山西省催化技术研究生教育创新中心”为基础,吸纳了相关学科负责人和校外导师,共同承担化学工程专业学位教育中心的职责。上述举措有利于各培养单位积极发挥主观能动性,形成符合各自专业实践特点的培养模式。

(三)导师遴选及评聘制度改革

山西大学研究生院根据各专业学位培养单位的具体情况,制订了详细的校内导师、企业导师评聘制度。特别是对企业导师实行“一年一考核,三年一聘”的管理办法。在学院教育中心层次上,化学化工学院成立了化学工程硕士指导小组,以“山西省催化技术研究生教育创新中心”为核心,吸纳其他理科或相关学科导师,实现导师之间的理工优势互补,在一定程度上解决了理科环境中开展应用实践的问题。此外,学院教育中心强化了企业导师的归属感和责任感,通过让企业导师参与课程设计及研究生选课、确定科研课题、开设学术讲座和专业特色选修课程等方式,进一步让企业导师融入学生培养过程。

(四)课程体系构建

2013年,山西大学根据教育部相关文件,结合各专业具体情况,对硕士研究生培养方案进行了详细的修订。在课程设置中,我们将课程分为公共基础课、专业基础课、专业应用课、选修课4类,各类课程均采用了教授授课、双语教学等模式,特别突出工程应用类型的课程。由于化学工程专业硕士的导师的知识存在多学科、多研究方向的交叉,因此,我们在课程设置上采取丰富选修课的方法解决这一问题。为了避免重复设课或课程内容重叠,各专业领域均可选择化学学科或其他专业领域的课程作为选修课。师资力量和师资水平方面,由于山西大学工科师资力量不足,我们采用“外校聘请+本校培养”的模式逐步提高师资水平。此外,学校还通过请企业导师或行业知名专家开设学术讲座、特色专业选修课等方式,使学生获悉国内外化工行业发展的最新动向。

(五)奖学金制度

现阶段山西大学研究生奖学金主要为国家奖学金和学业奖学金,原有奖学金评价主要基于学生学习成绩和科研成果的考量。化学化工学院将专业学位研究生与学术型研究生分开评比。专业学位研究生的科研成果可以是学术论文、专利、负责项目、实践报告、调查报告等多种形式,特别强调学术论文、专利、项目等必须具有应用背景。此外,针对专业学位研究生科研结果无法量化的问题,我们采用“预审+集中答辩”的方式,由答辩委员会评出获奖等级。上述评审制度的实施明显调动了专业学位研究生的科研积极性。

三、发展与方向

尽管我们在化学工程专业研究生培养方面进

行了许多改革,但仍有很多方面需要高校、企业及地方政府进一步协调改进。我们将目前改革探索的方向归纳如下,这既是我们的努力目标,也希望能够给予其他高校一些启发。

(一)提高学科认可度,创出专业品牌效应

优质的生源是研究生培养和学科发展的大前提,没有良好的生源,校企联合培养将成为无本之木、无源之水。近年来,山西大学通过增加推免生名额比例,明显提升了专业学位研究生的生源素质;与此同时,山西大学通过鼓励校企合作科研,建立多方参与的协同创新中心,进一步扩大了学校、学科的业内影响力。未来,山西大学将以校企协同创新中心为发展核心,以高水平人才队伍建设为发展动力,通过科研成果和科研团队创出专业品牌效应。

(二)深化校企人才技术交流平台建设,实现人才培养的良性循环

校企双方只有真正实现技术流、人才流的双向流动才能培养出真正的应用型人才。因此,我们需要建立完善的涉及项目合作、利益分配、人才交流等体制机制,进一步强化企业研究生实践中心的构建,通过校企合作项目引领、扩大平台的影响力,提升平台自我“造血”能力,逐步引导校企合作由“项目带动”发展到“人才+技术混合带动”,最终实现人才培养的良性循环。

(三)改革奖励制度,激励学科发展

目前,高校普遍以论文、项目等容易量化的参数考核教师和学生,这样不可避免地导致从事应用开发的导师和学生在论文、项目等级上处于竞争的不利地位。通过探索应用开发型导师的评价和奖励机制,探索专业学位研究生专项奖学金的可行措施,将有利于专业学位教育的发展。今后我们将在充分评估学生企业实践的基础上,探索校企联合培养平台成立专项奖学金制度,奖励联合培养期间实践成绩突出的研究生。四、结语在归纳化学工程领域专业学位研究生培养经验的基础上,我们提出了服务山西省资源大省转型发展的宗旨,以校企合作平台建设为核心,具体通过校企合作模式、导师管理、课程体系、激励机制等方面的深入改革,构建符合区域发展需求的化学工程专业学位研究生培养模式。该培养模式还有很多有待完善的地方。我们希望这一探索实践能够为国内其他高校的化学工程专业学位研究生培养提供参考借鉴。

化学工程与技术学科评估篇5

【关键词】教学模式 化学工程与工艺 知识结构 改革方向

【中图分类号】H191 【文献标识码】A 【文章编号】1009-9646(2008)09(b)-0037-02

1 国外高校化工类专业设置与人才培养模式

国外高校化工类高等教育有三种比较典型的模式:美国模式、德国模式和前苏联模式,分述如下。

1.1 美国模式

美国强调“通才培养”,在化学工程大类中,一般不再设置专业方向。其知识结构的重点是自然科学理论,专业知识很少。课程学习是为终身学习奠定基础。他们较重视基础实验教学,着重培养学生的动手能力与创新意识,但对工程设计、工程实践教学很淡薄,一般不设置生产实习、毕业论文、毕业设计及专业实验。当学生进入硕士或博士学习阶段时,根据所从事的研究方向,才会有一定的学科偏重。本科生的专业知识,一般在工作岗位上结合自己的工作补充学习,多数需一年以上的岗位培训。也就是说美国化学工程师的培养,一半是在学校另一半则由社会来完成。

但值得注意的是,美国高等工程教育在“未来的化学工程教育”报告书中,提出了高校化学工程教育中专业课程设置的建议,强调了技术开发、工程设计及实际操作训练。

1.2 德国模式

德国工科大学一般设置系,系(专业大类)下设置专业方向。对学科的专业方向、课程设置和教学内容,国家没有统一规定和要求,学校可根据本地区的特点、学校的传统、基础、科研成就及师资特长等来确定。德国的本科教育分基础学习和专业学习两个阶段。基础学习阶段一般为两年,主要学习通用基础课。在专业学习阶段,学生根据所选择的专业方向,完成规定的必修课和选修课,同时还必须完成规定的实验、课程设计、专题报告、实习及毕业论文等实践性环节的训练。另外,德国大学的“专业方向”与我们的“专业”概念是不同的。德国的专业方向一般只表明在这一学科中所包括的主要研究领域,从事这些领域研究工作的教授,在其所在的研究所里开设一些选修课,提供一些实践性环节(毕业论文等),训练机会由学生选择。

1.3 前苏联模式

前苏联高等工程教育模式与我国基本相同,专业划分又细又窄,甚至有些学校设置化学工程系、化工工艺系、化工机械系等。这些系下面又设置许多专业。例如化工工艺系下设无机物、基本有机高分子、有机染料及中间体、放射化学等专业。

随着经济体制的改革,前苏联解体后的多数国家也开始进行了多种高等工程教育改革。其中的一个方面就是拓宽专业,减小专业“钢度”,增加培养人才的适应性。

2 国内高校化工类专业设置与人才培养模式及其沿革

美国模式将专业学习和工程训练交由社会完成,不适合我国国情,因为我国企业没有岗位培训的基础。德国模式基本上是将专业学习和工程训练放在校内完成的,但德国学制较长(一般为5年,多数学生实际上需7~8年)。目前我国实际上是将专业学习和工程训练一部分放在校内,一部分放到社会。

20世纪50年代初,新中国学习前苏联高等教育的经验,在全国对高等学校进行第一次调整,1952年5月教育部制订了《全国高等学校院系调整计划》。其基本方针是以培养工业设计人才和师资为重点,发展专门学院,整顿加强综合性大学。1977年恢复高考后,1984年7月国家计委、教育部进行了第二次专业调整,颁发了《高等学校工科本科专业目录》。化工类专业设有化学工程、无机化工、有机化工、高分子化工、煤化工、石油化工、精细化工、生物化工、工业分析、电化学生产工艺等10个专业。第二次调整由于受当时计划经济体制和行业限制,专业口径仍然较窄。基本上是以产品划分专业,教学计划以产品工艺为核心,培养的人才是专门为某种或某类产品的生产而服务的。

国家教委于1993年7月又进行了第三次专业调整。化工与制药类设置有:化学工程、化工工艺、高分子化工、精细化工、生物化工、工业分析、电化学工程、工业催化、化学制药、生物制药、微生物制药、药物制剂、中药制药等13个专业。第三次专业目录调整,突出特点是将无机化工、有机化工、煤化工合并为化工工艺专业,拓宽了专业口径。初步改变了以产品划分专业的面貌。

1995年9月国家教委颁布了《工科本科专业引导性专业目录》,进行了第四次专业调整。在化工类中设有:化学工程与工艺专业(包括化学工程,化工工艺、精细化工、电化学工程、工业催化、化学制药等)和生物化学工程专业(包括生物化工、生物制药、微生物制药等)。这一次调整由于是引导性目录,并未在全国推行,但为1998年专业调整典定了基础。

1998年9月教育部又颁布了《普通高等学校本科专业目录和专业介绍》,这次是第五次调整。化工与制药类设两个专业,一个是化学工程与工艺【包括化学工程、化工工艺、高分子化工、精细化工、生物化工(部分)、工业分析、电化学工程、工业催化、化学工程与工艺、高分子材料及化工(部分)、生物化学工程(部分)】;另一个是制药工程【包括化学制药、生物制药(部分)、中药制药(部分)、制药工程】。

笔者认为,专业调整后我国现有的培养模式基本上是符合当前国情的,也就是在学校完成初步的工程训练,即进行工程师素质的培养,到岗位上再进一步结合工作需要进行学习和训练,补充必要的专门知识,增加岗位工程经验以后,便可成为高素质的专业化人才。

3 化学工程与工艺专业培养目标和知识结构

进入21世纪以来,化学工程与工艺专业的培养目标已逐步明确。旨在培养德、智、体全面发展,能为中国社会主义现代化服务的高素质的高等化工工程技术人才,能够掌握化工生产技术的基本原理、专业技能与研究方法,具有化工产品的研制开发与评估、化工装置的设计与放大、化工生产的控制与管理的能力。学生毕业后能具备在发展变化的世界,中适应工作获得成功的人才。

纵观世界各国相继提出并实施的教育改革的新思路与新举措,结合我国国情,面向21世纪的工程人才培养要求应该是:①有为建设祖国服务的思想;②有开拓、创新与应变能力;③博学多才,有工、理、文、管的综合知识;④有社会主义道德和敬业精神;⑤有国际交往和跨国工作的能力。

围绕培养目标,通过社会需求及行业和学科内部知识体系分析,我们将“化学工程与工艺”专业定位为以化学工艺(包括工艺技术、过程原理、单元操作及过程的合成、设计、开发、放大等)为主“体”,以过程装备(化工装备)及过程控制为“两翼”。在充分研究国内外高校化工类人才培养模式和吸收这些培养方案优点的基础上,根据创新人才培养的基本内容,遵循教材建设、人才培养的科学规律,笔者构建出包括人文基础课、基础理论课、专业基础课、专业技术课、方法课和实践环节的知识结构体系。

4 化学工程与工艺专业教学体系改革的方向探讨

根据国外高等工程教育和人才培养模式,结合国内兄弟院校考察与调研的结果,笔者提出化学工程与工艺专业教学体系改革的基本方向如下:

(1)改革教学计划,建立新的教学体系。化学工程与工艺专业教学计划改革的总体思路如下:①以核心主干课程建设为中心,积极应用现代教育技术,全面系统地推进课程建设。②拓宽专业知识面,保证宽口径培养目标的实现。课程设置体现“厚基础、宽专业”的原则,专业主干课程要博而通,淡化专业,增强学生的适应能力。③努力培养复合型人才,并为拔尖人才的培养和“宽厚型、复合型、外向型”人才的脱颖而出创造良好的条件。在达到基本要求的前提下,增加选修课的门类,加大选修课的比例。④加强实践环节,突出能力培养。加强、利用和组织好实践教学环节,使之与课堂理论教学相协调,使学生既能获得基础理论知识,又能拓宽专业面,培养、训练和提高工程实践能力以及创新能力。

(2)改革教学方法,贯彻“因材施教、个性化教学”的方针,提高教学质量。在教学方式上努力转变单纯传授知识与技能的观念,加强学生分析问题能力、解决问题能力和创新能力的培养。在教学过程中,必须逐步摆脱以教师为主、课堂为中心的填鸭式教学方法,大力推进启发式与讨论式教学方法的实践及现代教育技术的应用,增大信息量,提高教学效率,充分调动和发挥学生学习的主动性和积极性。同时,积极引导学生自学,培养学生自我获取知识的能力。

(3)加强师资建设,为培养创新型人才打造以“教授、博士”为主的一流教师队伍。要提高人才培养质量,教师队伍建设非常关键。高校应对教师加强学历教育和外出培训,大力提高教师的理论和实践水平。打造一流的教师队伍是培养创新型人才的基本条件。

(4)加强教材建设,建立适应创新型人才培养体系的教材体系。1995年原国家教委正式启动了“高等教育面向21世纪教学内容和课程体系改革计划”项目后,全国高校拉开了大规模面向21世纪高等教育改革的序幕,目前有1200多种教材已经在我国高校人才培养中发挥了巨大的作用。作者也与2007年由“科学出版社”主编出版了高等院校21世纪教材《精细化工工艺学》,目前已为国内数十所高校采用,得到了师生的普遍欢迎。

总之,为了培养和造就适合时代的高素质化工专业人才,高校必须顺应时代潮流,使课程体系和教学内容既符合我国化工类人才培养的发展要求,又兼顾地方经济建设和发展的需要,体现出院校的办学特色,发挥其长处。强调高等本科教育的“基础性”、“素质性”,让学生学会学习,传授给学生获取知识的能力。同时注重专业的适应性教育,不断进行培养方案与教学的改革,以适应不断变化的社会需求和经济的竞争。改革教学的目的是加强培养学生的创新精神和创造能力,使学校培养造就更多的具有创新精神的人才,为构建和谐社会、为祖国的现代化建设做出贡献。

参考文献

[1] Green A.Education and Globalization in Europe and East Asia:Convergent and Divergent Trend.Journal of Education Policy,1999,14(1):55~71.

[2] 王定标,陈卫航,魏新利等.化工专业人才培养及教学体系的改革与实践.化工高等教育,2005,(2):16-19.

[3] 蔡瑜琢.全球化及其对高等教育的影响.高等工程教育研究,2005,(1):23~27.

[4] 郭晓明.整体性课程结构观与优化课程结构的新思路.教育理论与实践,2001,21(5):38~42.

[5] 杜卫刚,周伟.高校化学工程与工艺专业创新型人才的培养模式.徐州工程学院学报,2006,21(12):106-108.

化学工程与技术学科评估篇6

生态学

人们都向往亚马逊热带雨林绚丽多姿、丰富多彩的植物世界,远离都市的喧嚣和人类工业、商业的文明使得热带丛林成为一片返璞归真的孤岛绿洲,它带给大家的不仅仅是视觉上的冲击,而且是一种身心的超然脱俗。

大家所看见亚马逊那样五彩斑斓的植被与各种光怪陆离的生物,其实也是生态学所研究的对象,生态学是研究生物与环境之间相互关系及其作用机理的科学。任何生物的生存都不是孤立存在的:同种个体之间有互助有竞争;植物、动物、微生物之间也存在复杂的相生相克关系。人类为满足自身的需要,不断改造环境,环境反过来又影响人类。

随着人类活动范围的扩大与多样化,人类与环境的关系问题变得越来越突出。因此近代生态学研究的范围,除生物个体、种群和生物群落外,已扩大到包括人类社会在内的多种类型生态系统的复合系统。人类面临的人口、资源、环境等几大问题都是生态学的研究内容。

生态学学习课程看起来特别富有“科学味”,从普通生物学、生物化学、生态学到环境微生物学、环境学、环境生态工程,隐隐都透出一个科学家的成长之路,闭着眼睛就能想象出一个身穿白大褂,静坐在电子显微镜前或者是手拿滴管做实验的形象。

就业观象台:

长期以来,我国西部部分地区过度砍伐、放牧,造成了严重的水土流失现象,野生动物、植物的生存空间越来越小,生态破坏没有得到控制。我国正处于西部大开发战略实施阶段,生态保护的任务主要是针对这种情况,在经济发展与生态环境改善之间寻找一个最佳平衡方案。国家这些年越发重视生态文明建设,中央下拨的资金连年增加,生态相关产业也得到了前所未有的发展。生态学毕业生可以从事农业生态、气象生态、生态农业和区域农业开发的规划与设计;园林景区、花卉企业(基地)、森林公园、自然保护区、生态园区等众多用人单位都是生态专业毕业生的热门就业选择,当然林业局、环保局也是较为不错的选择。

TIP:

在生态学专业的排名中,兰州大学、北京师范大学、华东师范大学、东北林业大学、东北师范大学、浙江大学、北京大学均榜上有名,不同的院校根据自身的教学条件和实力在具体的研究方向上都有不同的侧重点,考生可以根据自己的兴趣爱好报考自己喜欢的院校。

化学工程与技术

每天我们都在消耗着大量的清洁淡水,同时我们每时每刻都在产生各种生活污水,这些汇聚了多种“污染源”的污水在一起,即使是洁净能力再强的洗衣粉恐怕都不能将其转化为我们日常的生活用水,那么究竟是通过什么神奇的处理工艺才能达到这种效果呢?

化学工程与技术可谓是功能强大,它是一门研究以化学工业为代表的过程工业中有关化学过程与物理过程基本规律和应用的基础性工程技术学科。它不仅仅能解决氢能与燃料电池以及纳米粉体材料合成的问题,还能应用于医药中间体合成、无机材料合成工艺,也能参与到生物医药工程与生物材料制造的工作中来,它广泛应用于化工、生物、能源及制药等领域,当然进行水处理也是其在生态化工的分支运用之一。

化学工程与技术的确和许多学科相比已经不属于新兴学科行列,看似很普通,其实内在要求较高,它要求毕业生能够独立地、创造性地将化学工程知识运用于新材料、生物、医药、环保、新能源等领域的新产品研制、新工业过程研究及市场开发中来。化学工程与技术专业的学生在大学四年的学习过程中,会学习到现代生物技

化学工程与技术学科评估范文

化学工程与技术学科评估篇1[关键词]化学工程与工艺;人才培养模式;研究与实践作为支撑“化学工程与技术”一级学科的本科专业,化学工程与工艺专业涵盖了化学、化工相关
点击下载文档
确认删除?
VIP会员服务
限时5折优惠
回到顶部