三角形的内角和听课心得体会(专业15篇)

栏目:文库百科作者:文库宝发布:2024-02-16 22:04:10浏览:738

三角形的内角和听课心得体会(专业15篇)

写心得体会可以帮助我们更好地评估和提升自己的工作表现。心得体会是对自己在某一特定经历或事件中的感受和领悟的总结。在生活中,每个人都会有各种不同的经历和感悟,这些都可以成为写心得体会的素材。写心得体会可以帮助我们更好地反思和总结,从而更好地提高自己。那么我们该如何写一篇较为完美的心得体会呢?以下是小编为大家筛选出的精彩心得体会范文,欢迎大家共同交流和学习。

三角形的内角和评课稿

在整个教学设计上谢老师充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。具体体现在以下几点:

1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。

2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。

3、善用验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——看一看。

4、善于引导巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,谢老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如第一关牛刀小试:给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;第三关过关斩将:让学生判断有两个小三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

5、有一定的拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,谢老师设计了这样一道题目:学了三角形的内角和后,你知道四边形的内角和是多少度吗?这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。

总之,本节课教学活动中谢老师充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。是一节非常成功的课。

文档为doc格式。

学习三角形内角和心得体会

作为数学中重要的基础概念之一,三角形内角一直是中学数学中不可忽视的重要知识点。通过学习三角形内角的概念、性质以及计算方法,我深感受益匪浅。在学习过程中,我不仅掌握了三角形内角和的计算方法,还加深了对三角形及其性质的理解和应用。下面我将分享我在学习三角形内角和时的心得体会。

首先,在学习三角形内角和的过程中,我深刻体验到了数学的逻辑性和巧妙性。根据三角形内角和定理,三角形内角和等于180度。但是,在这个定理背后是经过推导和推论得来的,这就需要我们善于观察和归纳。通过学习和思考,我逐渐理解了这个规律,并能够熟练运用。这种逻辑的思考方式让我备受启发,提高了我的思维能力。

其次,学习三角形内角和还有助于培养我的抽象思维能力。三角形是一个抽象的概念,它可以根据角的大小来分类,如锐角三角形、直角三角形和钝角三角形。而在计算三角形内角和时,我们需要根据题目中给出的条件来推导并计算。在这个过程中,我学会了从具体的实例中抽象出概念和规律,这对我培养了抽象思维能力有很大的帮助。

进一步地,学习三角形内角和让我体会到数学的实用性和应用性。在实际生活中,我们经常需要通过测量或计算来求解角度。而学习三角形内角和可以帮助我们更好地理解和解决这类问题。例如,在测量角的大小时,我们可以通过计算相邻的两个角的和,以及已知角度,来求解未知角度。这种实用性的应用让我对学习数学更加有信心,也更多了一份对数学的兴趣。

最后,通过学习三角形内角和,我对三角形及其性质有了更深入的理解。通过计算三角形内角和,我们可以判断三角形的类型和性质。例如,如果一个三角形的内角和等于180度,则可以判断该三角形是一个平面三角形;又如,一个三角形有一个内角等于90度,则可判断该三角形是一个直角三角形。这种对三角形性质的理解不仅帮助我更好地记忆和运用知识,同时也提高了我的几何思维能力。

总之,学习三角形内角和让我深刻感受到了数学的逻辑性和巧妙性,培养了我的抽象思维能力,加深了对数学实用性和应用性的理解,以及提高了对三角形及其性质的认知。这种学习体会将会伴随我未来的学习和工作,成为我数学思维的熏陶和启发。

学习三角形内角和心得体会

学习三角形内角是数学学习中的基础知识之一,三角形是几何学中的重点内容之一。通过学习三角形内角,可以帮助我们更好地理解三角形的性质,提高数学思维能力。在学习的过程中,我深受启发,也积累了一些心得体会。

首先,我们来了解一下三角形内角的定义和性质。三角形内角是指三角形内部的角度,任意一个三角形的三个内角相加总是等于180度。这个性质被称为三角形内角和定理。基于内角和定理,我们可以进一步推导出三角形的其他性质,比如角平分线、垂直线等概念。通过理解和应用这些性质,我们可以更好地解决与三角形相关的问题。

第三段:学习方法和技巧。

在学习三角形内角的过程中,我们也可以运用一些学习方法和技巧,来提高学习效果。首先,要熟练掌握三角形内角和的计算方法,包括直角三角形、等腰三角形和一般三角形的特殊情况。其次,要多做练习题,通过实际操作来巩固知识。同时,还需要理解和运用三角函数,来解决与三角形内角和相关的实际问题。最后,要注重学习的整体性,将三角形内角和与其他知识点相结合,形成知识网络。

学习三角形内角不仅是为了解答与三角形相关的问题,更重要的是培养和提高我们的数学思维能力。学习三角形内角能够锻炼我们的逻辑思维、推理能力和问题解决能力。三角形内角和定理不仅仅适用于三角形,还可以推广应用到其他几何学相关知识中。通过学习三角形内角,我们可以更深入地理解几何学的基本概念和原理,提高我们的数学素养。

通过学习三角形内角,我深刻地认识到数学是一门自洽、逻辑严密的学科。三角形内角和定理的证明过程非常复杂,需要我们严密的思考和理解。而且,学习三角形内角还要求我们具备良好的空间想象力和几何直觉。通过不断练习和思考,我渐渐地培养起了这些能力。此外,学习三角形内角还让我慢慢体会到数学的美和魅力,它是一门融思考、推理和创造于一体的学科。通过学习三角形内角,我不仅仅掌握了一种方法,还获得了更深刻的数学认识,对数学产生了浓厚的兴趣。

总结:

学习三角形内角是数学学习中的重要内容之一,通过学习三角形内角,我们可以更好地理解三角形的性质和解决与三角形相关的问题。在学习过程中,我们可以运用一些学习方法和技巧,同时也要注重培养整体性的学习能力。学习三角形内角不仅仅是为了解答问题,更重要的是提高数学思维能力和数学素养。通过学习三角形内角,我们可以感受到数学的美和魅力,培养出对数学的兴趣和热爱。

三角形内角和证明心得体会

首先,我们来了解一下三角形内角和的概念。三角形内角和指的是一个三角形内的三个角的角度之和。也就是说,无论一个三角形的大小和形状如何,其内角和的总和是不变的。对于这个概念,我们需要进行一些证明,并从中得出一些体会。

一、首先是证明三角形内角和的公式:我们可以将一个任意的三角形划分为两个三角形,这样就可以得到2个内角和相等的三角形。根据这两个三角形的性质,它们的内角和分别为180度。因此,原先的三角形的内角和等于2个相同的三角形内角和之和,即2×180度。因此,三角形的内角和公式为:180度×(n-2),其中n为三角形的边数。这是三角形内角和的公式,也就意味着,无论三角形的大小和形状如何,其内角和的总和是不变的。

二、接下来,我想谈谈这个公式所蕴含的性质。这个公式表明了任意一个三角形内角和都是一个定值,这意味着我们在处理与三角形有关的问题时,我们可以依据这个公式来计算。同时,我们也可以通过这个定值来判断三角形是否存在。如果我们知道三角形的任意两个角的度数,我们就可以通过计算得出第三个角的度数,如果这个度数满足三角形内角和公式,那么这个三角形就是存在的。总之,这个公式为我们解决与三角形相关的问题提供了一个非常有效的工具。

三、其次,我们来看一下三角形内角和的一些特殊情况。如果我们将一个三角形变形成一条直线,那么这条直线上的角的度数之和显然是180度。这也就是说,当一个三角形的一个角的度数等于另外两个角的度数之和时,这个三角形就成为了直角三角形。这个特殊情况提示我们,任何一个角的度数都不能超过180度,超过这个范围就不再是三角形。

四、此外,我们还要关注三角形内角和的一个重要性质。在一个任意的三角形中,最大的内角所对应的边是最长的,而最小的内角所对应的边则是最短的。这提示我们,我们可以通过测量三角形的三个角的度数来判断三角形的大小和形状。如果一个三角形的度数都相等,那么这是一个等边三角形。如果只有两个角度相等,那么这是一个等腰三角形。通过这些性质,我们可以进行更复杂的三角形的处理。

五、最后,我想强调一个重点,那就是,我们需要掌握三角形内角和公式的证明过程。如果我们只是仅仅记住了这个公式,但是不理解其意义和原理,那么我们将很难理解和解决与三角形相关的问题。因此,在我们学习三角形内角和公式的过程中,我们需要认真学习其证明过程,并从中理解和掌握重要的原理和性质。只有这样,我们才能够真正掌握这个公式,以及它所包含的深刻含义。

三角形的证明听课心得体会

三角形作为几何学中的基本图形之一,具有丰富的性质和定理。在学习中证明三角形的一些相关定理过程中,我有幸参加了一堂生动有趣的证明课程,深刻感受到了数学证明的魅力。这次听课让我对数学的理解更加深入,同时也培养了我逻辑思维和分析问题的能力。

首先,课程的开始引人入胜,老师分享了一些与三角形相关的有趣事例和实际应用,使得大家对于学习的内容产生了浓厚的兴趣。老师讲述了古希腊的数学家毕达哥拉斯的故事,他发现了一个重要的定理——毕达哥拉斯定理,即直角三角形的两条直角边的平方和等于斜边的平方。这个定理不仅为数学研究提供了基础,也为实际生活中的测量和构造提供了方便。老师还提到了有关三角形的实际应用,如建筑工程中的角度测量,航海中的航线计算等。这些实例的讲述让我对于三角形证明的学习有了更直观的认识。

接着,课程以三角形的性质和定理为主线,详细介绍了一些经典的三角形定理。我印象最为深刻的是三角形的角平分线定理。老师首先讲述了这个定理的原理和推论,然后以实际的例子进行了具体运用,这让我真正理解了定理的含义和应用。通过证明了这一定理,我逐渐认识到数学证明的严谨性和逻辑性,深刻体会到了数学证明的美妙之处。

在课程的过程中,老师还鼓励同学们积极参与,提问和回答问题。通过与同学们的互动,我学到了很多我以前没有了解到的知识。同学们纷纷分享了自己的思考和观点,从不同的角度来解释和理解问题,这为我提供了新的思路和思考方式。我也积极向老师请教一些疑惑,老师耐心解答并鼓励我多思考多探索。这样的交流让我在学习中不再感觉孤立,而是能够充分发挥自己的思维和创造力。

最后,课程以综合练习的形式结束。老师提供了一些需要进行证明的三角形问题,让我们自己动手去解决。这种让学生主动参与的方式,激发了我们的求知欲和学习兴趣。虽然在解题的过程中会遇到一些困难,但通过自己的思考和尝试,我逐渐找到了解决问题的方法。解决问题的过程不仅培养了我的逻辑思维和分析问题的能力,也让我对于数学证明的过程和方法有了更深入的理解。

通过这次课程,我对于三角形的证明有了更加全面和深入的认识。我明白了数学证明的重要性,它不仅是数学学习中的一种方法,更是一个锻炼思维和培养逻辑能力的过程。在以后的学习中,我会将这些知识应用到实际问题中,不断提高自己的数学能力。同时,我也会更加注重数学证明的学习,进一步拓宽自己的视野,培养自己的数学思维。通过不断努力和学习,我相信自己一定能够在数学领域取得更大的成就。

三角形的内角和评课稿

一堂好课不应是自始至终的高潮和精彩,也不必是高科技现代教育技术的集中展示。一堂好课不是看它的热闹程度,而在于学生从中得到了什么,它留给人们的应是思考、启示和回味。2月19日上午,在沈家门第一小学,我有幸聆听了赵斌娜老师执教的《三角形的内角和》一课,这就是一堂好课。

赵老师营造了宽松和谐的课堂气氛,让学生能主动参与学习活动,既关注了学生的个人差异和不同的学习需求,又注重了学生的个体感悟,强调情感体验的过程。确立了学生在课堂教学中的主体地位,使学生在学习过程中既调动了积极性,又激发了学生的主体意识和进取精神。学生在自主、合作、探究的学习方式中互相激励,取长补短,能团结协作,最终形成了相应能力;同时培养了学生刻苦钻研,事实求是的态度。

教学过程是一堂课关键中的关键,新课标提出数学教学是数学活动的教学,而数学活动应是学生自己建构知识的活动。教师让学生“在参与中体验,在活动中发展”。本节课有操作活动、自主探索与合作交流、应用活动三个方面,下面我重点谈谈操作活动。

1、在实践材料上下了工夫。

操作实践的材料是精心选择的,老师为学生准备了用卡纸制作的形状、大小、颜色不同的三角形各几个,这样学生在操作时候,便于选择、测量、拼摆、观察、思考问题,而且这些三角形颜色醒目、比较大,学生应用起来很得手,操作的材料和学生的动手实践配合恰当。

2、找准时机让学生进行实践操作。

本节课安排了两次操作活动:一是在得出三角形内角和规律前进行实践操作,促使学生在实践操作中探究新知识;二是在初步得出规律之后,让学生通过实践操作来验证新知识。帮助学生清楚地认识到第一次出现内角和偏差的原因是测量误差造成的。给学生提供的这两次动手实践的机会,不仅提高了操作的效果,更重要的使“听数学”变为“做数学”。促使学生在“做数学”的过程中对所学知识产生了深刻的体验,从中感悟和理解到新知识的形成和发展,体会了数学学习的过程与方法,获得数学活动的经验。

3、把实践操作和数学思维结合起来。

学生通过实践操作获得的认识是一种感性的认识,是外在的直观的印象。在本节课中赵老师在学生实践操作的基础上引导学生把动手实践和数学思维结合起来,先让学生思考出可以用量、撕和拼的方法来推导三角形内角和的度数,接着引导学生说出量的方法,最后让学生实际测量。采取边说边操作,边讨论边操作的方式,让手、脑、口并用,在操作和直观教学的基础上及时对三角形内角和规律进行抽象概括。做到边动手,边思考。同时学生获得了一种数学思想和方法,学会了解决一些类似的一系列的问题,提高了实践动手的有效性。

三角形的证明听课心得体会

近期,我参加了一堂关于三角形的证明的课程,让我受益匪浅。本文将从讲师专业性、证明方法的灵活运用、学生参与度的提高、认识到证明的重要性以及启发与感悟等五个方面,来表达我对这堂课的体会。

首先,讲师的专业性给我留下了深刻的印象。他对三角形理论的了解非常深入,能够轻松地引用相关知识点,并解答学生的提问。他不仅扎实的数学基础,更通过大量的实例准确地将理论应用于实际问题的解决中。这不仅提高了我的学习兴趣,还让我对这门课程的重要性有了更加深刻的认识。

其次,课程中的证明方法的灵活运用给我带来了很大的启发。在课堂上,讲师灵活运用了各种证明方法,如数学归纳法、反证法、构造法等。通过这些不同的方法,我深刻地认识到数学证明并不是一成不变的,不同的问题需要不同的思路来解决。掌握并且熟练运用这些方法,对于涉及到证明的问题来说非常重要。

第三,课程上学生参与度的提高也让我深有体会。在课堂上,讲师不仅通过提问学生来检验他们的理解程度,还鼓励学生发表自己的观点。这样的环境既激发了学生的学习兴趣,又提高了他们积极参与的意愿。在此过程中,我也从逐渐被动听课转变为积极思考和发言的角色,这不仅提高了我的自信心,还加强了我对课程内容的理解。

第四,通过听课我也认识到了证明在数学学习中的重要性。在过去,我经常将注意力放在题目的解答上,往往觉得只要找到答案就好,忽视了对过程的分析。然而,通过课堂上大量的证明的案例分析,我意识到了证明过程的重要性。证明不仅是得到正确答案的手段,更是我们理解和掌握数学原理的基础。只有通过证明,我们才能真正理解数学的内涵和思维方式。

最后,这堂课给了我很多启发和感悟。首先,证明是数学学习中最基础也是最重要的部分,我们应该注重培养证明的能力。其次,数学的解法和证明方法并不是一成不变的,我们需要灵活运用各种方法来解决问题。最后,参与度高的课堂氛围能够激发学生的积极性和主动性,提高学习效果。我深深感激这次课程,它不仅让我对三角形与证明有了更深刻的了解,更为我今后的学习打下了坚实的基础。

总结起来,这堂关于三角形的证明的课程让我获益良多。从讲师专业性、证明方法的灵活运用、学生参与度的提高、认识到证明的重要性以及启发与感悟等多个方面,我都受益匪浅。这次课程不仅提高了我的数学基础,还激发了我的学习兴趣。我相信,通过对证明的深入学习和实践,我将能在数学学习中取得更大的突破。

三角形的内角和说课稿

各位老师:

你们好,我是来应聘xx数学老师的x号考生,我今天抽到的试讲题目是《三角形的内角和》,下面开始我的试讲。

大家拿出事先准备好的三角板和量角器吧,同学们,你们现在用量角器来测量一下每一个三角形的角的度数,待会老师会进行统计。(转身画两个三角板模型),测好了吧,下面请靠窗的同学告诉老师你的测量答案。30度60度90度,非常好,那另一个呢?45度45度和90度,非常精确,请坐,相信咱们其他同学也一定能够测量出来。那么大家仔细观察一下,这两组数据有没有什么相似点。有的同学说都有个九十度,很好,还有呢,很好!有的同学发现了,说这三个角加起来是180度,非常棒。也就是这两个三角形内角和是180度。

可是是不是所有内角和都是180度啊,同学们,你们自己分别画一个不同的锐角、钝角、直角三角形,并且测量每个内角度数,并报给老师内角和。好,请第一排的女生起来回答,你的三个内角和是多少?179,180,180很好,大家知道为什么第一个不是吗?对,是因为毕竟有误差的存在,很棒。

下面大家按以前的安排分成六个组,交给你们一个任务,你们讨论一下,怎么来验证我们刚刚得出的这个结论呢?给大家十分钟时间来讨论。

老师看到很多同学都皱起了眉头,那老师来给大家一点小提示, 我们试着把三角形的三个角剪下来拼拼看。啊,很棒我看到前排的同学把三个角拼成了一个平角,大家知道平角多少度?180。那下面,大家可以动动手,任意再画几个三角形,用刚刚的方法看看能不能拼成一个平角?好,大家都非常积极,通过刚刚的验证,我们可以肯定:三角形的内角和是180度。

那接下来我们回到咱们刚开始上课的问题:为什么不能画一个有两个直角的三角形?谁愿意给大家说说?好,你举手最快,请你来说说。嗯,很好,因为有两个九十度的角加起来就是180度了, 不可能画出一个三角形,太棒了。请坐。

大家看大屏幕,这里有两个三角形,老师给分别给大家标出了其中两个角的度数,有没有同学告诉我剩下的度数啊?赶紧开动脑筋算算看。好,算好的同学大声告诉老师,第一个是30度,很棒。第二个50度,很棒,算的非常准确,看来大家上课都非常认真。

这堂课我们就上到这里,请大家回去完成课后习题1到3。好,下课!

三角形内角和证明心得体会

三角形内角和是初中数学中的基础知识,但是对于许多学生来说,证明三角形内角和公式却是一件困难而且枯燥的事情。在学习这一内容中,我深刻地感受到,证明一个公式并不只是从书上背下来,更要理解并掌握其中的思想方法。以下,我将围绕着三角形内角和公式的证明,分享我的体会和经验。

三角形内角和公式是指:三角形的三个内角之和为180度。由于这个公式适用于所有的三角形,因此在数学中具有重要的作用。首先,我们需要认真研究三角形内角和公式的证明方法,这里我总结了以下几点。

第二段:使用三角形定理。

三角形定理包含了许多三角形的基本性质,也是证明三角形内角和公式的载体。我们可以利用角的对应原理和三角形的两边之和大于第三边等定理来推导内角和公式。其中,利用角的对应原理,可以得到“三角形内有一个角是等于一个已知角度的其它角的减去一个知道的角的度数和”的规律。

第三段:使用平行线等几何知识。

使用平行线等几何知识,也是证明三角形内角和公式的一种常用方法。我们可以通过画出三角形的外接圆,并在圆的周围添加三角形辅助线,使其构成一组等腰三角形或等边三角形。这唤醒了我们的几何直觉,让我们对三角形的内角和点明了正确的方向。

第四段:运用向量微积分。

向量微积分是一种高级数学分支,它可以用来证明三角形内角和公式。通过向量内积和向量外积的知识,我们可以构造出符合三角形内角和公式的等式。这种方法比较抽象,需要有较好的向量代数知识储备,不过它的优势在于可以拓展到高维空间的几何学中。很多时候,我们可以借鉴此方法,并将向量微积分知识灵活运用。

第五段:总结体会。

经过对三角形内角和公式的种种分析,我们发现证明三角形内角和公式并不是一件难事,关键在于我们有没有找到合适的方法分析问题。对于初学者来说,掌握数学原理的语言和思想,需要一定时间和努力。在学习的过程中,我们不能被自己的误区牵着鼻子走,要时刻警惕不D掉思考的本质。最后,解决一道数学问题,可以从多个角度去入手,而不是固守一种方法。坦诚地说,这是一种思维习惯和生活态度的转变,需要我们在多维度、多领域的学习中不断地尝试。

《三角形的内角和》教学反思

《三角形内角和》是人教版四年级下在学生掌握了三角形的特性和分类之后的一个内容。三角形的内角和为180°是三角形的一个重要性质。它有助于学生理解三角形三个内角之间的关系,也是学生下一步学习三角函数的基础。通过前面的摸底,我发现百分之八十的学生对三角形的内角和是180度是知道的,但都没有仔细研究过。学生有了这样的基础之后,对教师来说,要展开教学还是有困难的。怎么样才能让学生在整堂课中有所收获呢?我把教学目标定位在让学生经过操作、验证等一系列活动,经历猜测、验证的过程,从而习得知识,并得以巩固。我是这样安排的:

通过回忆旧知,引出钝角三角形,让学生指钝角,接着说另外二个角为锐角,教师接着引出这三个角叫做这个钝角三角形的三个内角,并画上相应的角的符号。师接着呈现直角三角形和锐角三角形,让学生找内角,让内角这一概念得到巩固。应该说在这个过程中,内角这个概念是落实得比较到位的,学生也能很快领悟到每个三角形的三个内角分别是什么。

通过前一阶段的说课,教研员指出在学习三角形的内角和是180度这一内容时,我们首先要告诉学生,或者是形成一个共识,那就是三角形的内角和都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的,是180度。面对这样的起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。

在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。

第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。

这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。

通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。

《三角形的内角和》评课稿

1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。

2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。

3、善用验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的`数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让(转自数学吧http://)每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——看一看。

4、善于引导巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,谢老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如第一关牛刀小试:给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;第三关过关斩将:让学生判断有两个小三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

5、有一定的拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,谢老师设计了这样一道题目:学了三角形的内角和后,你知道四边形的内角和是多少度吗?这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。

总之,本节课教学活动中谢老师充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。是一节非常成功的课。

《三角形的内角和》说课稿

三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。

因此,我确定本节课的教学目标是:

知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。

发展学生动手操作、观察比较和抽象概括的能力。

情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。

学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。

三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。

整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。

《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。

基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。

动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。

这一环节我设计为以下三步:

1、操作感知。

组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。

2、小组合作。

针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。

3、交流反馈,得出结论。

学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。

揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。

1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。

2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。

3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。

这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。

本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。

猜测验证结论应用。

三角形的内角和说课稿

各位评委、老师:

我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的'、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

采用“问题情境——建立模型——解释、应用与拓展”的模式展开教学。

采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

《三角形的内角和》数学教案

通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

引导学生说出90度、60度、30度。

出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

学生计算后指名回答。

师:三角尺三个角的和是180度。

提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

学生小组活动,教师了解学生情况,个别同学加以辅导。

全班交流:让学生分别说出三个角的度数以及它们的和。

提问:你发现了什么?

:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。

计算的结果为准。

完成想想做做的题目。

三角形的内角和说课稿

大家好!

今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。

(一)教学内容的地位

本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。

(二)教学重点、难点:

三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。

另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。

突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。

基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。

(一)知识与技能目标:

会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

(二)过程与方法目标:

经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。

(三)情感、态度价值观目标:

通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。

七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。

根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。

我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。 定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5. ‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。

本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观 ,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。

本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点 ,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。

新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:1、关注学生探索结论、分析思路和方法的过程。2、关注学生说理的能力和水平。3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。

以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!

三角形的内角和听课心得体会(专业15篇)

写心得体会可以帮助我们更好地评估和提升自己的工作表现。心得体会是对自己在某一特定经历或事件中的感受和领悟的总结。在生活中,每个人都会有各种不同的经历和感悟,这些都可以成为写心得体会的素材。写心得体会可以帮助我们更好地反思和总结,从而更好地提
点击下载文档
确认删除?
VIP会员服务
限时5折优惠
回到顶部