无线电通信基本原理范文

栏目:文库百科作者:文库宝发布:2023-11-09 17:30:50浏览:535

无线电通信基本原理

无线电通信基本原理篇1

【关键词】抗干扰技术;软件无线电

1引言

在现代的无线通信系统中,由于所处的传播的电磁环境非常复杂,因此无线通信系统经常受到各种电磁干扰信号的影响,这种干扰不仅有自然环境的干扰信号,而且还有人为施加的干扰信号,对无线电通信抗干扰技术的研究一直是无线通信领域研究人员研究的热点问题。目前广泛采用的无线通信抗干扰技术包括扩频技术、跳频技术以及扩频跳频混合技术。采用以上几种抗干扰技术的缺点是增大了无线电通信系统的电路复杂程度,提高了无线通信设备的研制和生产成本。基于软件无线电技术的无线电通信抗干扰技术能够克服成本高的缺点,并且能够灵活多变、实时动态地实施通信对抗, 是提高系统对抗的一个有效措施[1]。软件无线电通信抗干扰系统的基本设计思想是尽量通过软件实现系统的各种功能, 让尽可能多的系统功能由通过软件来完成,这样可以大大减少无线电通信系统的硬件成本,提高通信系统效率。

2采用软件无线电抗干扰技术的无线电通信系统基本原理

采用软件无线电抗干扰技术的无线电通信系统,主要包括干扰信号检测模块、控制模块、收发信机模块和计算机模块四部分。其工作原理是:在干扰信号检测模块,由天线接收的无线干扰信号经滤波器与混频器后成为中频信号,再由 A/D 变换为数字信号,DSP将采集到的干扰信号参数送入计算机。在收发信机模块中,发信时音频信号经过A/D转换之后进入DSP电路进行基带数字信号的处理,再经过A/D变换、信号放大与变频, 最后由天线发射出去;收信时,天线感应的射频( RF) 信号, 经过混频得到IF 信号,然后进行A/D 变换,对IF 数字信号进行数字化处理,实现音频信号解调等功能,最后送到耳机。在控制模块中,主要完成对干扰信号检测模块、收发信机模块的控制,执行计算机送来的的指令。计算机根据干扰信号检测模块送来的无线电干扰信号的参数,采取对应的抗干扰对策,主要包括进行数据传输码率的设定、调制参数设置等以及向无线电通信系统传输信息。

3软件无线电通信系统中抗干扰技术分析

3.1软件无线电通信抗干扰中的数字处理技术

在无线电通信系统中,数字信号处理芯片DSP在干扰信号检测模块主要进行干扰信号参数的采集,在收发信机模块主要实现音频信号的数字化处理与调制解调。在无线电通信系统收发信机模块中经过中频数据宽带A/D 变换后的数据流位数较高,对数字中频信号进行放大、滤波与混频等处理需要较高的运算速率,只有采用高速并行的DSP多处理器模块,才可能达到要求。为了减轻通用数字处理芯片DSP 的处理压力,通常采用专用数字信号处理器件对A/D 转换器传来的数字信号进行处理,降低数据流传输速率,并把信号变到数据基带信号后,再把数据信号送到DSP 芯片进行处理。软件无线电抗干扰通信系统中采用并行和顺序分割的算法,以获得较高的处理能力。目前多数通信系统是将微处理器CPU 的通用性与DSP 芯片的功能结合起来,将CPU 和专用DSP 进行集成。现在已研制出新的采用多处理器互联技术的DSP芯片的 多重处理结构,正是因为这种互联多处理器的链路加快了数据流的速度,减轻了总线传输的瓶颈问题。

3.2软件无线电通信抗干扰中射频分频段滤波处理技术

在采用软件无线电抗干扰技术的无线通信系统的收发信机模块中,为了实现宽频带无线信号的检测、发送、接收,受无线电电子元器件的限制,采用一个滤波器无法实现宽带信号的收发。目前通常采用若干个滤波器在控制模块的统一控制下进行无线电信号分频段处理来实现。对于无线电信号来讲,无论其频段高低,信号的品质因数与传输带宽永远都是一对矛盾,一般我们设计时都是要根据实际情况折中考虑滤波器的品质因数与信号带宽,尽量达到无线电通信系统的信号传输要求。

3.3软件无线电通信抗干扰中的高速AD转换技术

在采用软件无线电抗干扰技术的无线通信系统的收发信机模块与干扰信号检测模块均采用了高速A/D转换技术。应用高速A/D、D/A 技术时,应该重点考虑信号采样方法选择、模拟信号滤波方法、信号失真等几个重要因素的影响。我们在无线通信系统中通采用的模数变换的方法有正交采样、带通采样、过采样以及有奈奎斯特采样。设计的时候,在收发模块与干扰信号检测模块中的模数转换(A/D)电路要尽量接近天线,以便实现对软件无线电抗干扰无线通信系统设计的软件可编程性。高速模数转换(A/D)的采用对无线电通信系统的性能也存在较大影响,主要表现在:A/D转换电路的最高采样率限制了所能处理已调信号的频率,同时在A/D数字化采样的均匀量化中,模拟信号引入的量化噪声功率容易导致信号谐波失真,容易造成收发模块中的接收机灵敏度下降。

3.4 软件无线电通信抗干扰中的天线技术

采用软件无线电抗干扰技术的无线通信系统收发信机的天线必须能够覆盖多个无线通信频段,用于满足多个无线信道同时通信的要求。由于无线信号频率不同使得各个无线频段对天线的要求也不相同,在多个无线信道抗干扰方式下,若横跨多个无线电通信频段,天线必须要与射频处理模块匹配。软件无线电通信抗干扰技术的无线通信系统对天线的要求较高,当前还很难设计出频带较宽、损耗较低的天线,只能在技术可行性和经济可行性上采取折中措施。

4结束语

基于软件无线电技术的无线电通信系统是当代无线通信技术与计算机技术飞速发展的产物, 采用软件无线电抗干扰技术的无线通信平台更适合于现代电子对抗与通信保密的要求, 同时也大大提高了无线电通信网络的灵活性、实时性、稳定性。

【参考文献】

[1]张尔扬,李琳. 软件无线电中的关键技术[J]. 电声技术, 1999(3) : 52-54.

[2] 崔迎炜,张晓林. 软件无线电中的高速设计技术[J]. 北京航空航天大学学报;2004年01期.

[3] 毛永毅. 软件无线电的结构模型及关键技术[J]. 西安邮电学院学报;2001年03期.

【作者简介】

无线电通信基本原理篇2

【关键词】无线电 通信测向 误差 分析

1 无线电测向概述

1.1 无线电测向系统的组成

无线电测向设备分为多种种类,其组成也不尽相同。在目前的测向系统中,无线电测向设备的组成主要可以分为四个部分:

1.1.1 测向天线体系

它的主要部分是旋转搜索的测向天线,它可以定向接受信号,并进行定位,传输到网络的接受终端。

1.1.2 输入匹配网络

其主要包括变量器、传输线、接力放大器等元件。这个部分是为了式接收到的来波方位信息不失真,保证输入信号的准确性。

1.1.3 接收机

接收机可以对信号进行选择,并且可以实现对含有方位信息的信号进行处理。

1.1.4 终端示向设备

主要是为了提取信息,并显示出目标电台的准确方位。

1.2 无线电测向方法的基本原理

无线电测向主要是为了对无线电波辐射源的方向进行测量。在具体的测向过程中,天线体系的天线元之间的距离受到限制,因此,可以将电波辐射场中的天线元接收到电场强度看做是等值,只是存在相位上的差别。因此,在测向的过程中,方位信息就被包含各个相位中。在不同的天线体系上,会产生一定的感应电动势力。因此,可以对目标电台方位信息进行不同的处理。

2 影响无线电通信测向的因素

在无线电通信测向的过程中,测向的精准度受到多种因素的干扰,并由多种因素共同形成。通常来说,当传输的介质不均匀、多径波相干、设备的精准度比较低时,就容易对测向带来一定的影响,从而导致出现一定的误差。

2.1 传输介质不均匀

无线电传播具有直线的特征,它要求传输的介质要均匀,但是,在传输的过程中,由于地波在各种不同的地表交界时会产生“海岸效应”。所以,传播的介质很难一直保持均匀状态,因此,当电离层发生反射时,会发生偏移,或者被阻挡,从而影响了无线电传播的方向。随着时间的退役,由于传播介质导致的偏移会较小,但是仍然存在。因此,在对无线电通信进行测向时,要控制好传输的介质。

2.2 多径波相干

在无线电传输的过程中,会发生多径波的现象,或者在测试点的周围发现了二次辐射体,通过两者之间的较差,从而导致电场之间的相互干扰,使空间的分布发生了偏离,进而导致无线电通信测向发生较大的偏差,影响了测向的精准度,导致出现误差。

2.3 测向设备精确度低

无线电通信测向设备的精准度影响着无线电通信测向的精确度。当设备的精度较低时,在测向的过程中,难以保证侧向设备的正常运行状态,测向的结果会存在一定的偏差,不具有一定的可靠性。

2.4 噪声干扰

在无线电通信测向中,作业任务是对低场强信号进行测向,因此,若出现同波或者噪声,都会影响测向的精准度。在测向的过程中,经常会出现背景噪声等,从而对无线电通信测向造成一定的干扰,导致结果发生一定的偏差。

3 常见的无线电通信测向误差

3.1 环境误差

在无线电通信测向的过程中,系统会接受到辐射源辐射的无线电信号,但是由于受到环境因素的干扰,比如,周边存在森林、铁塔、高压电线等,都会干扰无线电的传输方向,从而使其偏离传输的路径,影响测向的精准度,导致偏差的发生。

3.2 系统误差

当在无线电通信测向的过程中,要先对场地进行固定,然后对某个方向的信号进行测量,在这个过程中,若发生由于二次辐射体导致的方位误差,则这种情况就属于系统误差。同时,在系统误差中,设备误差就属于其中一种,若测向设备不精准,则测向的结果则不具有可靠性。和其他的误差相比,设备误差对测向结果具有更大的影响,这主要是因为,测向设备误差和测试系统的选型有着密切的关系,因此,要充分了解设备的工作原理,并优化选型,尽量减少由于设备误差造成的系统误差,影响测向结果的准确性。另外,天线半径也是其中一个重要的系统误差。天线半径引发的误差受到多种因素的影响,比如来波的方向等。

3.3 人为误差

在对无线电通信测向时,除了会受到环境因素和系统因素的影响,还有一个不可忽视的问题就是,人为因素的干扰。其中可以包括:测向人员的技术水平、测向的方法等,若不能很好的运用这些方法,则会降低结果的准确性,产生误差。

4 减小测向误差的方法

4.1 选择合理的测向设备并注重维护

要选择合理的测向设备,首先要选择孔径较大的天线阵,而且还有具备专业的接收机,若有条件的化,可以选择相关干涉仪测向机,其技术比较成熟,而且抗干扰能力较强,因此,可以更好地减小误差。空间谱测向机可以实现对多波的测向,其抗干扰能力也比较强。

当设备在运行一段时间后,会产生一定的磨损,因此,要加强对测向设备的维护,尤其是在执行任务时,要事先检测几个重要的信号,保证其示向度的准确性,并保证设备运行的正常,才能开始工作。

4.2 选择合理的测向时间

在进行无线电测向之前,要选择合适的测向时间,防止出现较多的干扰因素,也避免当在进行信号的调试时进行测定。因为,内部干扰也会对无线电测向的精确性产生重大的影响,从而影响测向的结果。

4.3 提高测向人员的专业素质

在测向工作中,测向人员是其中重要的操作人员,经常会发生由于测向人员个人的失误而发生的误差,因此,测向人员需要具备良好的素质,要测向之前,要了解测向地区的地形情况,并且在经过多次测量后,获得准确的位置。在测向的过程中,频率会发生变化,从而导致测向设备的示向度的变化,尤其当进行移动时,若只依赖设备的提示难以找到精准的位置,影响测向的效果。在这种情况下,就需要测向人员根据环境的影响,将不可信或者无效的信号进行排除,减少一些不良因素的干扰,并寻找到正确的方向。

5 结语

随着实践的不断丰富,发展了多种无线电通信测向的理论和及时,而且现代信息化的发展,无线电通信测向发挥着越来越重要的作用,而且,应用的范围了领域也越来越广阔。应用到城市无线电管理的研究领域中,对我国现代化建设具有重大的意义。

参考文献

[1]顾俊杰.机载无线电测向布阵选择与误差源分析[J].通信对抗,2011(02):16-18+30.

[2]孙洪智.无线电通信测向误差分析[J]. 电子技术与软件工程,2015(21):43.

[3]沈建峰.高压输电线路对无线电测向精度影响实测分析[J].电子学报,2014(06):1244-1248.

作者单位

无线电通信基本原理篇3

关键词:无线电;通信设备;电磁屏蔽技术

引言

电磁屏蔽技术是现代无线电通信产业的一个重要结晶,通过该项技术能大大增强无线电通信设备的抗干扰性,进而可提升无线电发射设备的稳定性与安全性,最终会大大提升信号的传输与播出质量,对现代无线电通信产业的发展具有积极影响。若想提升整个无线电通信设备的运行效果,减少机房辐射对人体的伤害,应重视对电磁屏蔽技术的严格规范,严格约束技术参数与标准,借助该项技术实现对干扰信号的排除,以增强整个通信设备的运行效果。

1电磁屏蔽的基本原理概述

对于无线电通信设备而言,选择电磁屏蔽技术,主要是能对干道信号予以排除,以避免发生无线电箱对人体安全的威胁[1]。所谓的电磁屏蔽就是利用金属材质的壳或板等屏蔽主体来把电磁波限定在一定环境与范围之内。使用电磁屏蔽技术时,所选用的屏蔽性材料有很强的导电性,能及时吸收或反射电磁波,以避免设备被电磁波干扰,能抑制电磁辐射,进而将安全风险予以排除。通常情况下,屏蔽主要表现为电屏蔽、磁屏蔽与电磁屏蔽三种[2]。在电磁屏蔽之中,都是导体设计在干扰源与敏感设备间,且对导体结构进行接地处理,以此来对干扰源所引出的电力线予以阻挡,让电力线在导体结构上处于静止的状态,进而达到保护敏感设备的目的。使用电磁屏蔽技术对干扰源予以抑制时,应使用高磁导率性材料,借助此材料的地词组特性来实现磁分路的效果,进而达到引导磁场的效果,能让磁场借助屏蔽主体来向前进行传播,进而会让屏蔽主体内部的磁场逐渐减弱,最终达到维护与保护设备的效果。在部分高频电磁场环境中,电磁场具有高度的辐射性,容易发生远场干扰问题,相关工作人员必须对远场环境中的磁场与电场给予高度关注,为应对此项问题,必须强化对电磁屏蔽技术的合理性应用。以电磁波为介质,将信号传输到不同阻抗的表面而产生反射,在良性电导体中使用电磁波时,信号传输时会发生严重的衰减问题[3],进而可借助屏蔽主体来将电磁波中的能量予以吸收掉,能大大降低屏蔽主体内的电磁能量值,以实现屏蔽的目的。

2无线电通信设备的电磁屏蔽技术

2.1电磁场屏蔽

在无线电通信设备中,电磁屏蔽主要是借助屏蔽主体来将电磁场予以屏蔽,要求电磁场不可在指定范围内进行传播。运用电磁场进行屏蔽时,主要的方法如下:其一,吸收法。电磁在通过屏蔽主体时,不是全部电磁能量都能被屏蔽,剩余的能量会顺着屏蔽主体表面渗透到屏蔽主体之中,受到屏蔽材料的影响,致使能量不断衰减,也就是说部分电磁能量被吸收,仅仅能达到预期的屏蔽效果。其二,反射法。在特定条件下,电磁屏蔽主体的原材料以金属为主,金属元素与空间之间的交界面阻抗有非连续性的特质,电磁波在通过屏蔽主体的表面之时,电磁入射波会受到不可连续性的阻抗来反射,进而实现屏蔽目的。其三,反射与吸收共同作用。电磁能量在通过屏蔽主体时,部分元素会被屏蔽主体所吸收,另一部分会被严重反射,进而会使得电磁力逐渐衰减,最终达到预期的屏蔽效果。

2.2磁场屏蔽

一般来讲,磁场屏蔽对象主要表现为直流磁场与低频磁场。相较于电磁场屏蔽技术,磁场屏蔽技术效能偏低,运用磁场屏蔽技术时,需要使用屏蔽主体材料的高导性与磁性等分路作用来达到好低磁阻的效果,在此过程中,磁通在通过屏蔽主体时,会出现大幅度减退的情况。工作人员应注意设备与屏蔽主体间必须距离较近,运用此种方式才能适度削减磁通量[4]。此外,对屏蔽主体进行设计时,应重视孔道设计,孔道能让屏蔽主体磁阻特性变得更为强烈,这样会导致屏蔽无法达到理想效果。场地与环境对屏蔽强度的影响很大,若想达到理想的屏蔽效果,对屏蔽主体质量的要求很高,工作者应使用双层磁屏蔽主体,是提升屏蔽效果的重要途径。在外部强磁场屏蔽上,工作人员必须对屏蔽材料的质量进行严格要求,屏蔽外层应使用不易饱和材料;若在屏蔽主体内部进行屏蔽,则需使用饱和性强的高导磁性材料,若对内部强磁场予以屏蔽,建议使用次序倒换类的材料。

2.3电场屏蔽

电场屏蔽是将电场感应视为电容的耦合。屏蔽电场时,屏蔽体与被屏蔽体间需要保持较近的距离,此外,还要控制好屏蔽体的接地情况。在屏蔽体形态来看,工作者只要根据需求选择合适的形态。一般来讲,相较于开放性的屏蔽主体,全封闭性屏蔽主体的屏蔽效果更佳,但是,在现实生活中若想达到全封闭实在是很难。与其他屏蔽技术相比,电场屏蔽技术在屏蔽主体厚度上的要求不是很严格,一般的导体都可满足标准,但是在强度上,该种屏蔽技术对强度的要求更高,需要相关人员给予高度重视。

2.4严格规范屏蔽材料质量

若用作磁场屏蔽,屏蔽材料应以铁磁性材料为主,如铁、合金等,此类材料具有高导磁性,能吸收足量的磁场能量;若用作电场屏蔽,屏蔽主体的底板、机壳材料应使用良性导体,此种材料能对电磁能量实现反射;若磁场较强,屏蔽主体需要对电场、磁场等进行全面屏蔽,材料必须满足要求,严格规范接地手段、材料的厚度参数等。与此同时,工作者应禁止发生电气系统结构发生中断,以实现对底板、机壳的辐射泄漏问题予以掌控。

3结束语

综上所述,在现实生活中,无线电设备是不可或缺的,其在整个社会现代化发展进程中扮演着重要的角色。使用电磁屏蔽技术时,选择何种方式,技术员必须充分结合无线电通信设备的运行状态与实际情况选择合适的屏蔽方法,若符合实际状况,才能达到预期效果,满足各项屏蔽需求,以提高屏蔽质量,对整个无线电通信设备的运行具有积极影响。

参考文献:

[1]朱刚.无线电通信设备的电磁屏蔽[J].电子技术与软件工程,2013(05):46-47.

[2]李鹏鸣.关于无线电设备电磁屏蔽技术的探讨[J].科技创新与应用,2016(08):54.

[3]薛虎.关于无线电设备电磁屏蔽技术的探讨[J].黑龙江科技信息,2016(17):119.

[4]薛仙玲.无线电通信设备的电磁屏蔽技术分析[J].黑龙江科技信息,2016(25):119.

无线电通信基本原理篇4

关键词:无线电通信设备; 电磁屏蔽; 基本原理

1.引 言

为了保证无线电发射设备的运行安全,提高无线电信号的播出质量,无线电设备屏蔽技术在无线电通信领域得到了广泛使用。随着无线电通信事业的发展和科学技术的进步,现在无线台站的屏蔽要求越来越高,无线电设备屏蔽问题也越来越受到重视。众所周知,高频无线辐射会对人体产生一定的危害,为保证无线电通信工作人员的身体健康,对无线设备机房进行屏蔽和对人员进行防护很有必要。现在随着全固态无线电发射机的广泛使用和遥控遥测技术的推广,无线电设备屏蔽问题也越来越突出。无线电发射设备由于采用大功率射频设备,内部电磁环境复杂,干扰源众多,无论是数据的采集、传输和计算机系统本身都极易受到干扰,造成误报、误告警、误动作,给无线电通信安全造成不良影响。同时采用屏蔽技术可以大大降低雷击造成的电磁危害。

2.无线电屏蔽的基本原理

无线电设备屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。

当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。

在实际中,许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。其实电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素,一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。但也不是用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。因此,当干扰的频率较高时,这时波长较短,就需要使用电磁密封衬垫。具体说,当干扰的频率超过10MHz时,就要考虑使用电磁密封衬垫。凡是有弹性且导电良好的材料都可以用做电磁密封衬垫。常使用的电磁密封衬垫有导电橡胶、金属编织网、指形簧片、多重导电橡胶等。

3.无线电设备屏蔽的主要方法

无线电设备屏蔽按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽。

3.1电场屏蔽

电场屏蔽将电场感应看成分布电容间的藕合。在使用中,屏蔽板以靠近受保护物为好,而且屏蔽板的接地必须良好;屏蔽板的形状对屏蔽效能的高低有明显影响,全封闭的金属盒最好,但工程中很难做到;屏蔽板的材料以良导体为好,但对厚度无要求,只要有足够的强度就可了。

3.2 磁场屏蔽

磁场屏蔽通常是指对直流或低频磁场的屏蔽,其效果比电场屏蔽和电磁场屏蔽要差的多。它主要是依靠高导磁材料所具有的低磁阻,对磁通起着分路的作用,使得屏蔽体内部的磁场大为减弱。在使用中,要选用高导磁材料,如坡莫合金;要增加屏蔽体的厚度。这两点均是为了减小屏蔽体的磁阻。被屏蔽的物体不要安排在紧靠屏蔽体的位置上,以尽量减小通过被屏蔽物体体内的磁通;注意屏蔽体的结构设计,凡接缝、通风孔等均可能增加屏蔽体的磁阻,从而降低屏蔽效果;对于强磁场的屏蔽可采用双层磁屏蔽体的结构。

对要屏蔽外部强磁场的,则屏蔽体的外层选用不易饱和的材料,如硅钢;而内部可选用容易达到饱和的高导磁材料,如坡莫合金等。反之,如果要屏蔽内部强磁场时,则材料的排列次序要倒过来。

在安装内外两层屏蔽体时,要注意彼此间的绝缘。当没有接地要求时,可用绝缘材料做支撑件,若需接地时,可选用非铁磁材料(如铜、铝)做支撑件。

3.3 电磁场屏蔽

电磁场屏蔽是利用屏蔽体阻止电磁场在空间传播的一种措施。

它的屏蔽机理是:

(1)未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减,也就是所谓的吸收。

(2)当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射。这种反射不要求屏蔽材料必须有一定的厚度,只要求交界面上的不连续;

(3)在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属一空气阻抗不连续的交界面,会形成再次反射,并重新返回屏蔽体内,这种反射在两个金属的交界面上可能有多次的反射。总之,电磁屏蔽体对电磁的衰减主要是基于电磁波的反射和电磁波的吸收。

3.4 实际的电磁屏蔽体结构材料

(1)适用于底板和机壳的材料大多数是良导体,如铜、铝等,可以屏蔽电场,主要的屏蔽机理是反射信号而不是吸收。

(2)对磁场的屏蔽需要铁磁材料,如高导磁率合金和铁。主要的屏蔽机理是吸收而不是反射。

(3)在强电磁环境中,要求材料能屏蔽电场和磁场两种成分,因此需要结构上完好的铁磁材料,屏蔽效率直接受材料的厚度以及搭接和接地方法好坏的影响。

必须尽量减少结构的电气不连续性,以便控制经底板和机壳进出的泄漏辐射。提高缝隙屏蔽效能的结构措施包括增加缝隙深度,减少缝隙长度,在结合面上加入导电衬垫,在接缝处涂上导电涂料,缩短螺钉间距离等。

4.实际运用中的注意事项

(1)要注意由于电缆穿过机壳使整体屏蔽效能降低的程度。典型的未滤波的导线穿过屏蔽体时,屏蔽效能降低30dB以上。

(2)电源线进入机壳时,全部应通过滤波器盒。滤波器的输入端最好能穿出到屏蔽机壳外;若滤波器结构不宜穿出机壳,则应在电源线进入机壳处专为滤波器设置一隔舱。

(3)信号线、控制线进入或穿出机壳时,要通过适当的滤波器。具有滤波插针的多芯连接器适于这种场合使用。

(4)必须注意在截止波导孔内贯通金属轴或导线时会严重降低屏蔽效能。

(5)当要求使用对地绝缘的金属控制轴时,可用短的隐性控制轴,不调节时,用螺帽或金属衬垫弹性安装帽盖住。

(6)为保险丝、插孔等加金属帽。

(7)用导电衬垫和垫圈、螺母等实现钮子开关防泄漏安装。

无线电通信基本原理篇5

GPS作为一种优越的定位系统,在汽车导航、物流运输、资源勘探、水利建设、铁路建设、灾后救援等方面都发挥了无比重要的作用。在工程测量中,它相比于其他测量方式更为优越,GPS点标志在测量中也发挥了重要的作用。GPS在测量中所具有的优点分析如下:1)GPS方格网的测量精度指标是点位中误差,更优于相对中误差。2)在大型的工程测量方案中,布设大地控制网时,若采用GPS方法,由于图形的强度系数较高,可以大大提高点位的趋近速度,更有利于网形的优化。3)GPS测设方格网时,构造简单,可以灵活选取点的疏密和边的长短,同时它也解决了点位之间无法通视的困难,还可以保证在外施行测量方案时不受天气影响。4)GPS方格网的误差分布很均匀,能够满足常规测量的规范要求。与此同时,它的点位精度也很高,具有较大的精度储备。5)GPS-RTK相比于其他方法,效率更高,更具有自主性,可以减少劳动力的消耗,流动站也可以由单人完成作业。

2GPS(RTK)系统的构成

GPS(RTK)系统主要由三大部分构成,包括无线电通信系统、流动站以及基准站。其中,流动站包含了流动站控制器、电源、无线电通讯接听系统、GPS天线以及GPS接收机等。基准站涵盖了基准站控制器、为无线电台和GPS接收机提供能量的电源、无线电通讯发射系统、GPS天线以及GPS接收机等。

3GPS(RTK)工程测量遵循的基本原理

用户接收部分、空间卫星部分以及地面监控部分共同构成了完整的GPS系统,各功能间相互区别、相互联系,共同构成了一个统一的整体。就静态GPS测量系统而言,要确保观测效果的实时性,就必须拥有两台或者以上数量的接收机,各接收机接收的数据会存在细微的差别,后期用软件处理的方式能将WGS-84坐标系统的基线向量进行准确显示,在进行坐标转换、平差等工作以后,三维坐标即可求出。最后结果无法在现场即时获取。图1是对RTK实时相对定位原理的简单展示。基准站接收到的卫星信号要及时、准确地传递到流动站,就要依靠无线电通信系统,流动站能及时接收卫星数据,而且基准站传递的卫星数据它也能接收。在初始工作完成以后,流动站能及时将基准站信息传递到控制器,从而对这些载波进行差分处理,最终计算出未知点的具体三维坐标。

4GPS(RTK)配合全站仪的具体施测过程

RTK的设计必须严格遵守以下操作原则:1)应在测区中央位置架设基准站,而且要始终保持基准站距离无线电发射塔和高压线至少50m。已知点确定以后,应在此基础上校正点位,确保RTK的准确、可靠。2)要确保基准站仪器平整、精确,对中要控制在1mm以内,而整平精度要保持在半格以内。3)15°是接收机接收卫星的理想高度角。4)在确定基准站天线高度时应在不同的三个方向反复测量,确保互差小于3mm,天线高度应为三次平均值。对流动站的技术要求规范:1)不小于13°是最佳卫星高度角。2)至少观测5颗以上的卫星数。3)选择流动站位置时要谨慎,尽量将其控制在转换范围内,在不超过基准参考站10km的位置架设。4)在进行观测工作以前,要认真检测已测点或者已知点,确保准确。5)进行测量时必须保证RTK处于固定状态。6)测点相对图根点的相对中误差不得大于图上0.12mm(实地20cm)。7)在选用RTK为图根点确定方法时,要尽可能选择易于仪器操作和搬运且实现良好的地方,所以,理想的图根点位置为十字路口或者平房区,为了检测方便,要确定后视点。全站仪的基本操作流程:1)尽可能整平对中,将对中偏差控制在1mm以内;2)全站仪启动后,打开文件管理界面,新建文件夹,将文件储存在该文件夹下;3)在检核过程中,将后视点作为检核点,进行点收集的基本前提是偏差在可控范围内,否则,要对具体原因进行调查;4)对碎部点数据信息进行搜集和整理。特别要强调的事项:1)要分清盘左盘右,始终在一个方向观测一个测站;2)一旦触碰到测站仪器,就需立即校正。

5结语

GPS作为一种优越的定位系统,在工程测量中,有着显著的优势。本文主要研究和探讨了GPS(RTK)系统的组成,GPS(RTK)工程测量基本原理,GPS(RTK)配合全站仪的施测过程,有利于推动GPS动态测量技术新的发展和进步。

无线电通信基本原理篇6

【关键词】4G;4G关键技术;OFDM;SA;MIMO;SDR;4G发展现状

根据国际电联的工作安排,2009年将集中征集4G技术标准,2010年会推出第一个4G版本,并在2011年世界无线电通信大会上通过。4G预计2015年左右投入商用。4G技术的飞速发展,使得广大用户享受更新、更快捷、更丰富的通信生活成为可能。

1.4G网络中的关键技术

1.1 OFDM

OFDM即正交频分复用技术,实际上OFDM是MCM Multi-CarrierM

odulation,多载波调制的一种。OFDM技术有很多优点:可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率;适合高速数据传输;抗衰落能力强;抗码间干扰(ISI)能力强。

1.2智能天线(SA)与多入多出天线(MIMO)技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。其基本原理是在无线基站端使用天线阵和相干无线收发信机来实现射频信号的接收和发射。同时通过基带数字信号处理器,对各个天线链路上接收到的信号按一定算法进行合并,实现上行波束赋形。目前智能天线的工作方式主要有两种:全自适应方式和基于预多波束的波束切换方式。

移动通信环境中的多径传播对通信的有效性与可靠性造成了严重的影响。而多输入多输出(M1MO)技术在通信链路两端均使用多个天线,发端将信源输出的串行码流转成多路并行子码流,分别通过不同的发射天线阵元同频、同时发送,接收方则利用多径引起的多个接收天线上信号的不相关性从混合信号中分离估计出原始子码流,这相当于频带资源重复利用,使频谱利用率和链路可靠性极大的提高。

1.3软件无线电技术(SDR)

软件无线电(SDR)是将标准化、模块化的硬件功能单元经一通用硬件平台,利用软件加载方式来实现各类无线电通信系统的一种开放式结构的技术。其中心思想是使宽带模数转换器(A/D)及数模转换器(D/A)等先进的模块尽可能地靠近射频天线的要求。尽可能多地用软件来定义无线功能。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、调制解调算法软件、信道纠错编码软件、信源编码软件等。软件无线电技术主要涉及数字信号处理硬件(DSPH)、现场可编程器件(FPGA)、数字信号处理(DSP)等。

1.4基于IP的核心网

4G移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接人方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种窄中接口接人核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。在4G通信系统中将取代IPv4协议,主要采用全分组方式IPv6技术。

2.4G技术的发展现况及其挑战

2.1日本NTI-DoCoMo在4G的领先优势

2008年日本NTT DoCoMo公司新闻公报称,该公司在2007年年底进行的4G外场试验中,创下5.3Gb/s的最大下行速率纪录。在此次试验中,无线通信系统的发射端和接收端天线均从一年前试验时的6根增加到12根,并采用了该公司独有的接收信号处理技术,使下行速率成功翻倍。

2.2 WiMAX“准4G”标准

2007年10月19日,国际电信联盟ITU在日内瓦举行无线通信全体会议,无线宽带技术WiMAX通过投票正式成为3G标准。

WiMAX,即IEEE 802A6x,全称是“微波存取全球互通技术(Worldwide Interoperability for MicrowaveAccess)”,被业界认为是高于现有3G标准的“准4G”标准。和传统的TD-SCDMA、WCDMA和CDMA2000相比,WiMAX的最大传输半径达到了约50km,接近前者的两倍。而在传输速度上,WiMAX也让其他3G标准望尘莫及。在10km范围内,WiMAX网络的带宽可以达到70Mb/S,甚至超过了ADSL等有线网络的技术,而3G标准中的TD SCDMA和WCDMA则均为2Mb/s。

2.3美国与欧洲针对4G的举动

作为美国的代表,3G时代的霸主高通公司一方面希望通过引入DMMX和HMMX这两项技术后,性能达到4G的要求;另一方面则通过收购Flarion科技公司获得了近300项OFDM技术专利,这被业界视为高通欲在4G时代继续保持专利的绝对领先之举。

在欧洲,爱立信已与美国加利福尼亚大学合作开发4G技术。加利福尼亚大学已正式成立了加州通信和信息技术学会,并得到了爱立信的投资。而阿尔卡特、爱立信、摩托罗拉、诺基亚、西门子成立了旨在推动4G技术开发的世界无线研究论坛WWRF(Wireless World Research Forum)。该组织下设的6个工作组,分别讨论业务、市场、结构、接口、核心技术等问题。

2.4我国正在加快4G关键技术研究步伐

从2001年底起,继在国产3G标准制定方面取得巨大进展之后,国家“十五”、“863”计划启动了面向未来移动与无线通信发展的“FUTURE计划”。

2006年7月,上海建设的世界最大的4G实验网通过了863项目的验收。通过验收的上海试验网由三个无线覆盖小区、六个无线接入点组成,具有在移动环境下支持蜂值速率为100Mb/S的无线传输及高清晰度交互式图像业务演示等功能。

“FUTURE计划”负责人之一、国家“863”计划未来移动通信总体组组长尤肖虎表示,我国已经在国内外申请移动通信技术发明专利100余项,我国在第四代移动通信技术上已经处于世界前沿。

2009年,我国对4G的发展步伐明显加快。大唐移动联合中兴通讯、华为以及相关高校和科研院所完成了4G相关白皮书。相关业内人士透露,我国已经完成了4G标准的技术方案起草工作,目前正在进行4G关键技术的系统验证。我国目前正在更多地区进行4G系统的测试工作,且要赶在2010年前对其进行商业化测试,以便在2011年世界无线电通信大会时向国际电信联盟提交有着自主知识产权的4G标准。

3.4G移动通信技术未来预测

随着目前3G移动通信技术的全面商用化的开始,我国大部分的手机用户将感受到3G技术给我们带来的便捷,同时也能明显的感到3G技术的不足与缺陷。这些不足与缺陷将成为移动通信技术不断进步的动力。

无线电通信基本原理篇7

关键词:自动增益放大器;软件无线电;数字信号;FPGA

中图分类号:TN911.8 文献标识码:A 文章编号:1007-9416(2017)01-0177-02

Abstract:Automatic gain amplifier is applied to adjust adaptively the weak signals amplitude to ensure the telecommunication operate normally. The software radio technology which adopts digital signal technique makes the system with high universality and high reliability. Based on software radio technology, this paper designs a low complexity automatic gain control for the weak digital baseband signals. The controller has advantages of simple realization, high flexibility, high reaction speed and so on.

Key Words:automatic gain amplifier; software radio; digital signals; FPGA

在移动通信系统中,接收信号由于受到干扰和噪声影响,幅度发生变化。为了保证通信的正常,需要设计一个随着输入信号强度的改变而改变的自动增益控制器[1]来实时调整接收信号幅度的变化。软件无线电技术[4]突破了传统系统以硬件为核心的设计模式,将宽带A/D转换器尽可能靠近射频端,将模拟信号尽可能早地转化为数字信号。以数字信号处理为核心,克服了硬件扩展性差的局限性。软件无线电可实现完全的可编程性,实现通信中的各种调制方式。随着超大规模集成电路的发展和FPGA的广泛使用,逐渐将传统硬件实现的功能模块由软件编程来实现。在四相移键控调制(QPSK)通信系统中,接收信号经过A/D采样、数字下变频和匹配滤波后,数字基带信号位宽截取会导致幅度下降,对后续的信号均衡产生不良影响。本文基于软件无线电技术,将幅度下降的幅度信号进行放大,提出一种简单可行的可变增益放大器(VGA)设计。

1 基本原理

1.1 自动增益控制器(AGC)

传统的AGC系统是模拟AGC系统,采用模拟电路方法实现自动增益控制功能。根据系统是否存在反馈电路,可分为闭环AGC系统和开环AGC系统两种。开环AGC系统[2]的优点是动态范围大,缺点是精度较低、惯性大、反应迟缓,对系统参数敏感等。闭环AGC系统由于反馈环路的引入,其响应时间会有所延迟,响应速度适中、对系统参数敏感度低。闭环AGC电路由比较电路、控制电路、可控增益放大电路和反馈网络四部分构成,其结构图如图1所示。比较电路的作用是产生误差信号。比较算法越合理,比较器性能越好。比较算法主要有逐次比较、中值比较等,常用的方法是直接用反馈输入信号与参考量作差。控制电路是由误差信号得到控制信号,达到控制可控增益放大器的目的。控制信号分为用于指示调整增益方向和增益调整大小的信号两种。可变增益放大电路AGC电路的核心部件,用于完成增益值的产生和信号的参数调整。反馈网络的作用是提取反馈信号,提取反馈信号幅度方法[3]有:包络检波算法、电平检测算法等。在具体应用时,需根据实际情况来选择。

1.2 软件无线电技术

软件无线电技g是一种无线电广播通信技术,它基于软件定义的无线通信协议而非通过硬连线实现。可以通过软件更新和下载来升级空中接口协议和功能及频带,而不需要更换硬件电路。软件无线电技术是一种典型的综合性技术,需要许多基本技术的支撑。对于一个较为成熟的软件无线电平台来说,它所涉及的技术主要包含以下技术:射频/微波技术、智能天线技术、采样技术、调制解调技术、数字信号处理技术、软件设计技术和信息安全技术等。软件无线电技术可解决由于新技术改革带来系统间兼容问题,可以降低由于系统设备升级改造的投入成本。减少传统的软件无线电系统射频部分以及其他模拟部件,通过可编程数字信号处理器件来提高系统的灵活性,简化了开发研制的过程。

软件无线电的基本思想是把宽带ADC及DAC尽量靠近射频天线。在这个硬件平台上要尽量用软件技术来实现传统技术中用硬件实现的各种功能模块。软件无线电技术有可重构性、灵活性和模块化等特点,很好解决了硬件设备升级、兼容性等问题。软件无线电系统由四个主要部分组成:接收和发射信号的天线部分、射频前端部分、模/数转换及数/模转换部分和数字信号处理部分。在现代无线电通信领域中,软件无线电作为一种新的技术,将实现以太网、蓝牙、无线网络和广电网之间的互相兼容和无缝连接,使新一代移动通信技术提供更多有效的业务。

2 设计与仿真

2.1 系统模型

数字相移键控调制技术是一类性能优良的调制方式,这种调制方式由于频带利用率而广泛应用于高速数据传输系统中。其中,最为常用的是四相相移键控(QPSK)。本文是基于FPGA平台,数字下变频是和匹配滤波都是要进行定点运算,在运算过程中必然会进行数据位宽的截短,以便降低FPGA占用资源。中频频率为20MHz,经过A/D采样后,变为16位宽的数字信号,数字下变频在FPGA中使用ROM查表法,位宽为11bits。图2和图3给出了QPSK解调端[5](Eb/N0=15dB)数字下变频后经过截短后的时域波形图和信号星座图。

由图2和图3可以看出,经过数字下变频后,基带信号幅度不再是恒定包络,存在幅度变小的现象。这就需要对其进行放大,以便解调端正确解调出数据。QPSK信号解调时,分为I和Q两路,要两路同时进行方法,避免发生两路信号不平衡。

对I和Q路基带信号,分别计算每帧信号最大模值Amax,有两种方法进行控制增益放大器。第一种是对上帧数据按进行归一化,这种方法需要运用除法运算,占用FPGA资源多和计算精度低,因而本文不采用归一化方法来控制增益放大器。第二种方法如图4所示,根据幅度值Amax前几位为零,来控制增益放大器的放大倍数。这种方法在FPGA中,实现十分简单,直接进行两路同时左移放大信号。

2.2 仿真结果

对上面提出的基带信号增益放大器进行仿真,仿真结果如图5和图6所示,具体仿真条件与上节相同。由图6可以看出,基带信号时域波形接近横幅,无明显幅度畸变。同时,由图6可以看出,经过增益放大器后,基带信号的星座图更紧凑。

3 结语

本文所提的数字基带信号增益放大器,通过软件无线电技术,在FPGA内部通过软件补偿由于数字下变频的定点运算对信号幅度产生的衰减。这种方法具有实现简单,复杂度低,相应速率快等特点。但是,这种增益放大器不具有衰减功能,由数据超出满量程而造成的畸变,无法进行补偿。

参考文献

[1]樊昌信,张甫翊.徐炳祥通信原理[M].北京:国防大学出版社,2006.

[2]赖小强,李双田.数字闭环自动增益控制系统设计与实现[J].网络新媒体技术,2013.

[3]李磊,朱长根.全数字接收机中的 AGC 设计与数字化实现[J].重庆科技学院学报,2008,10(2):1-4.

[4]栗欣,许希斌.软件无线电原理与技术[M].北京:人民邮电出版社,2010.

无线电通信基本原理篇8

红外通信的基本原理是利用波长介于850~900nm的近红外波段的红外线作为信息的载体,发送时采用脉时调制方式,将二进制信号调制为若干脉冲信号,并驱动红外发射管等红外发射器件将信号以光脉冲的形式发送出去。红外接收端接收到脉冲后,将光脉冲转换为电信号,再经过放大滤波等处理后送给解调电路进行解调,最终以二进制数字信号的形式输出。由于这种通信方式采用的波长与无线电的波长不同,不受无线电信号的影响,从而保证数据的安全性。红外通信的脉冲数据传输方式如图1所示。对于发送端来说,当发送二进制数据“1”时,没有红外脉冲发射;发送二进制数“0”时,则发送3/16带宽的红外脉冲信息。而对于接收端来说,没有接收到红外信号,则认为是“1”;接收到则认为是“0”。

2系统设计

2.1系统总体设计本设计主要由单片机、红外芯片、RS485通信口等组成。系统的组成结构如图2所示。利用单片机来控制红外芯片的工作,每个节点都是1个单独的设备,内部含有2个红外模块,可以实现红外的收发功能,同时还集成了RS485接口,可以实现多个设备的级联。每个设备相互分离,使放置时更加方便快捷,利用RS485进行模块之间的级联,实现长距数据通信。

2.2硬件电路设计红外电路选用芯片说明书中推荐的电路,其电路图如图3所示,为使电路简单,供电方便,逻辑电压与供电电压选用同一电压供电。2个红外通信模块分别连接到单片机的串口1与串口2上,串口3经过双向开关来选择连接到RS485通信口还是RS232通信口,单片机与红外芯片及485通信口之间放置LED灯,用来显示当前此芯片的工作状态,方便实时检测,同时还起到了故障报警的作用。

2.3软件设计本设计中选用支持IrDA的STM8L单片机,省去了转换电路,只需要设置单片机中的相应参数就可以实现红外通信模块的驱动。其程序流程图如图4所示。软件设计时需要注意的主要是在串口初始化时要将红外所对应的串口设置为IrDA模式,并使能红外无线通信功能。

3实验数据测试

数据通信的主要关注点就是通信的误码率、角度、有效距离以及波特率等。误码率是衡量数据在规定时间内数据传输精确性的指标,其公式为:误码率=传输中的误码/所传输的总码数×100%。本设计的模块在数据传输过程中,误码的产生主要与红外数据通信模块之间的距离以及角度有关,因此针对不同角度以及不同距离所产生的误码率做出实验测试。测试过程中将通信波特率设置为红外数据通信可接受的最高波特率115200。总共测试10次,每次发送100Byte十六进制数据,对测试数据取平均值处理之后如表1、表2所示。由图5可知,当2红外模块距离小于120cm时,数据能够无误码地传输;模块距离在140~190cm范围时,接收模块能够接收到数据,但接收的是乱码或者数据接收不全;当距离大于200cm时,接收模块完全接收不到数据。由图6可知,当2模块间的角度小于35°时,模块之间数据能够无误码地传输;当2模块间角度在40°~60°范围内时,接收模块接收到的数据为乱码或者数据接收不全;当角度大于60°,接收模块完全接收不到数据。由测试结果可知,本设计红外通信模块可以在35°、120cm的范围内无误码的有效传输。采用RS485级联时可以实现100m内红外信号的全覆盖,并且可以实现不同房间之间的数据通信。

4结论

本设计中的红外芯片支持波特率高115.2kb/s。通信有效距离达到120cm,通信角度在35°左右。在1条通信线路中采用多节点红外通信方式提高红外通信的距离,弥补了红外无线通信距离短的问题,不仅提高了红外通信的距离,而且还可以在任意节点采集信号的传输状况,检测信号在传输过程中的误码率。测试过程中,节点间最大距离可以达到160cm。能满足一般的室内无线传输,若要将其应用于长距离通信,则只需将各模块级联起来,各模块可以采用单一供电,也可以采用统一供电方式,在实际工作时只需将本模块的开关打开,让其正常工作即可。该技术实现简单,性价比高,应用范围广。主要有功耗低、速率高、安装与携带方便、可级联、通信距离长等优点。在无线电通信泛滥的今天可以很好地解决电磁信号干扰的问题。实际应用时性能稳定,效果良好。

无线电通信基本原理范文

无线电通信基本原理篇1【关键词】抗干扰技术;软件无线电1引言在现代的无线通信系统中,由于所处的传播的电磁环境非常复杂,因此无线通信系统经常受到各种电磁干扰信号的
点击下载文档
确认删除?
VIP会员服务
限时5折优惠
回到顶部